首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Due to their high efficiency, specificity, and flexibility, programmable nucleases, such as those of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a (Cpf1) system, have greatly expanded the applicability of editing the genomes of various organisms. Genes from different gene families or genes with redundant functions in the same gene family can be examined by assembling multiple CRISPR RNAs (crRNAs) in a single vector. However, the activity and efficiency of CRISPR/Cas12a in the non‐vascular plant Physcomitrella patens are largely unknown. Here, we demonstrate that LbCas12a together with its mature crRNA can target multiple loci simultaneously in P. patens with high efficiency via co‐delivery of LbCas12a and a crRNA expression cassette in vivo. The mutation frequencies induced by CRISPR/LbCas12a at a single locus ranged from 26.5 to 100%, with diverse deletions being the most common type of mutation. Our method expands the repertoire of genome editing tools available for P. patens and facilitates the creation of loss‐of‐function mutants of multiple genes from different gene families.  相似文献   

2.
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is severely damaging to the global citrus industry. Targeted editing of host disease‐susceptibility genes represents an interesting and potentially durable alternative in plant breeding for resistance. Here, we report improvement of citrus canker resistance through CRISPR/Cas9‐targeted modification of the susceptibility gene CsLOB1 promoter in citrus. Wanjincheng orange (Citrus sinensis Osbeck) harbours at least three copies of the CsLOB1G allele and one copy of the CsLOB1? allele. The promoter of both alleles contains the effector binding element (EBEPthA4), which is recognized by the main effector PthA4 of Xcc to activate CsLOB1 expression to promote citrus canker development. Five pCas9/CsLOB1sgRNA constructs were designed to modify the EBEPthA4 of the CsLOB1 promoter in Wanjincheng orange. Among these constructs, mutation rates were 11.5%–64.7%. Homozygous mutants were generated directly from citrus explants. Sixteen lines that harboured EBEPthA4 modifications were identified from 38 mutant plants. Four mutation lines (S2‐5, S2‐6, S2‐12 and S5‐13), in which promoter editing disrupted CsLOB1 induction in response to Xcc infection, showed enhanced resistance to citrus canker compared with the wild type. No canker symptoms were observed in the S2‐6 and S5‐13 lines. Promoter editing of CsLOB1G alone was sufficient to enhance citrus canker resistance in Wanjincheng orange. Deletion of the entire EBEPthA4 sequence from both CsLOB1 alleles conferred a high degree of resistance to citrus canker. The results demonstrate that CRISPR/Cas9‐mediated promoter editing of CsLOB1 is an efficient strategy for generation of canker‐resistant citrus cultivars.  相似文献   

3.
The CRISPR/Cas12a editing system opens new possibilities for plant genome engineering. To obtain a comparative assessment of RNA‐guided endonuclease (RGEN) types in plants, we adapted the CRISPR/Cas12a system to the GoldenBraid (GB) modular cloning platform and compared the efficiency of Acidaminococcus (As) and Lachnospiraceae (Lb) Cas12a variants with the previously described GB‐assembled Streptococcus pyogenes Cas9 (SpCas9) constructs in eight Nicotiana benthamiana loci using transient expression. All three nucleases showed drastic target‐dependent differences in efficiency, with LbCas12 producing higher mutagenesis rates in five of the eight loci assayed, as estimated with the T7E1 endonuclease assay. Attempts to engineer crRNA direct repeat (DR) had little effect improving on‐target efficiency for AsCas12a and resulted deleterious in the case of LbCas12a. To complete the assessment of Cas12a activity, we carried out genome editing experiments in three different model plants, namely N. benthamiana, Solanum lycopersicum and Arabidopsis thaliana. For the latter, we also resequenced Cas12a‐free segregating T2 lines to assess possible off‐target effects. Our results showed that the mutagenesis footprint of Cas12a is enriched in deletions of ?10 to ?2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off‐target mutations neither in related sequences nor somewhere else in the genome. Collectively, this study shows that LbCas12a is a viable alternative to SpCas9 for plant genome engineering.  相似文献   

4.
CRISPR‐Cpf1 is a newly identified CRISPR‐Cas system, and Cpf1 was recently engineered as a molecular tool for targeted genome editing in mammalian cells. To test whether the engineered CRISPR‐Cpf1 system could induce the production of rice mutants, we selected two genome targets in the OsPDS and OsBEL genes. Our results show that both targets could be efficiently mutated in transgenic rice plants using CRISPR‐Cpf1. We found that pre‐crRNAs with a full‐length direct repeat sequence exhibited considerably increased efficiencies compared with mature crRNAs. In addition, the specificity and transmission of the mutation were investigated, and the behaviours of crRNA‐Cpf1‐induced plant targeted genome mutagenesis were assessed. Taken together, our results indicate that CRISPR‐Cpf1 expression via stable transformation can efficiently generate specific and heritable targeted mutations in rice and thereby constitutes a novel and important approach to specific and precise plant genome editing.  相似文献   

5.
The ability to address the CRISPR‐Cas9 nuclease complex to any target DNA using customizable single‐guide RNAs has now permitted genome engineering in many species. Here, we report its first successful use in a nonvascular plant, the moss Physcomitrella patens. Single‐guide RNAs (sgRNAs) were designed to target an endogenous reporter gene, PpAPT, whose inactivation confers resistance to 2‐fluoroadenine. Transformation of moss protoplasts with these sgRNAs and the Cas9 coding sequence from Streptococcus pyogenes triggered mutagenesis at the PpAPT target in about 2% of the regenerated plants. Mainly, deletions were observed, most of them resulting from alternative end‐joining (alt‐EJ)‐driven repair. We further demonstrate that, in the presence of a donor DNA sharing sequence homology with the PpAPT gene, most transgene integration events occur by homology‐driven repair (HDR) at the target locus but also that Cas9‐induced double‐strand breaks are repaired with almost equal frequencies by mutagenic illegitimate recombination. Finally, we establish that a significant fraction of HDR‐mediated gene targeting events (30%) is still possible in the absence of PpRAD51 protein, indicating that CRISPR‐induced HDR is only partially mediated by the classical homologous recombination pathway.  相似文献   

6.
CRISPR/Cas9 and Cas12a (Cpf1) nucleases are two of the most powerful genome editing tools in plants. In this work, we compared their activities by targeting maize glossy2 gene coding region that has overlapping sequences recognized by both nucleases. We introduced constructs carrying SpCas9‐guide RNA (gRNA) and LbCas12a‐CRISPR RNA (crRNA) into maize inbred B104 embryos using Agrobacterium‐mediated transformation. On‐target mutation analysis showed that 90%–100% of the Cas9‐edited T0 plants carried indel mutations and 63%–77% of them were homozygous or biallelic mutants. In contrast, 0%–60% of Cas12a‐edited T0 plants had on‐target mutations. We then conducted CIRCLE‐seq analysis to identify genome‐wide potential off‐target sites for Cas9. A total of 18 and 67 potential off‐targets were identified for the two gRNAs, respectively, with an average of five mismatches compared to the target sites. Sequencing analysis of a selected subset of the off‐target sites revealed no detectable level of mutations in the T1 plants, which constitutively express Cas9 nuclease and gRNAs. In conclusion, our results suggest that the CRISPR/Cas9 system used in this study is highly efficient and specific for genome editing in maize, while CRISPR/Cas12a needs further optimization for improved editing efficiency.  相似文献   

7.
8.
9.
10.
In recent years, the type II CRISPR system has become a widely used and robust technique to implement site‐directed mutagenesis in a variety of species including model and crop plants. However, few studies manipulated metabolic pathways in plants using the CRISPR system. Here, we introduced the pYLCRISPR/Cas9 system with one or two single‐site guide RNAs to target the tomato phytoene desaturase gene. An obvious albino phenotype was observed in T0 regenerated plants, and more than 61% of the desired target sites were edited. Furthermore, we manipulated the γ‐aminobutyric acid (GABA) shunt in tomatoes using a multiplex pYLCRISPR/Cas9 system that targeted five key genes. Fifty‐three genome‐edited plants were obtained following single plant transformation, and these samples represented single to quadruple mutants. The GABA accumulation in both the leaves and fruits of genomically edited lines was significantly enhanced, and the GABA content in the leaves of quadruple mutants was 19‐fold higher than that in wild‐type plants. Our data demonstrate that the multiplex CRISPR/Cas9 system can be exploited to precisely edit tomato genomic sequences and effectively create multisite knockout mutations, which could shed new light on plant metabolic engineering regulations.  相似文献   

11.
The Queensland fruit fly, Bactrocera tryoni (Froggatt), is a polyphagous horticultural pest in Australia that is capable of causing significant damage to more than 100 different host fruits and vegetables. Chemical applications and ecological control strategies, such as the sterile insect technique (SIT), are commonly used to suppress established populations and eradicate invasive outbreaks following migration. The recently published B. tryoni draft genome provides new opportunities to identify candidate genes for targeted genome modification in order to generate advanced genetic strains for management using sterile insect strategies. Here, we demonstrate CRISPR/Cas‐mediated mutagenesis in B. tryoni through generating a series of frame‐shift mutations in the ATP‐dependent binding cassette transporter, white, causing a classic white‐eye phenotype. This work establishes methods for CRISPR/Cas genome editing in tephritids and demonstrates its potential for developing genetic sexing strains which could be used for SIT‐based pest control.  相似文献   

12.
13.
CRISPR/Cas9 and TALEN are currently the two systems of choice for genome editing. We have studied the efficiency of the TALEN system in rice as well as the nature and inheritability of TALEN‐induced mutations and found important features of this technology. The N287C230 TALEN backbone resulted in low mutation rates (0–6.6%), but truncations in its C‐terminal domain dramatically increased efficiency to 25%. In most transgenic T0 plants, TALEN produced a single prevalent mutation accompanied by a variety of low‐frequency mutations. For each independent T0 plant, the prevalent mutation was present in most tissues within a single tiller as well as in all tillers examined, suggesting that TALEN‐induced mutations occurred very early in the development of the shoot apical meristem. Multigenerational analysis showed that TALEN‐induced mutations were stably transmitted to the T1 and T2 populations in a normal Mendelian fashion. In our study, the vast majority of TALEN‐induced mutations (~81%) affected multiple bases and ~70% of them were deletions. Our results contrast with published reports for the CRISPR/Cas9 system in rice, in which the predominant mutations affected single bases and deletions accounted for only 3.3% of the overall mutations.  相似文献   

14.
15.
The development and adoption of hybrid seed technology have led to dramatic increases in agricultural productivity. However, it has been a challenge to develop a commercially viable platform for the production of hybrid wheat (Triticum aestivum) seed due to wheat's strong inbreeding habit. Recently, a novel platform for commercial hybrid seed production was described. This hybridization platform utilizes nuclear male sterility to force outcrossing and has been applied to maize and rice. With the recent molecular identification of the wheat male fertility gene Ms1, it is now possible to extend the use of this novel hybridization platform to wheat. In this report, we used the CRISPR/Cas9 system to generate heritable, targeted mutations in Ms1. The introduction of biallelic frameshift mutations into Ms1 resulted in complete male sterility in wheat cultivars Fielder and Gladius, and several of the selected male‐sterile lines were potentially non‐transgenic. Our study demonstrates the utility of the CRISPR/Cas9 system for the rapid generation of male sterility in commercial wheat cultivars. This represents an important step towards capturing heterosis to improve wheat yields, through the production and use of hybrid seed on an industrial scale.  相似文献   

16.
杨帆  李寅 《生物工程学报》2017,33(3):361-371
CRISPR/Cas系统几乎存在于所有的细菌和古菌中,是用来抵御外来病毒和噬菌体入侵的获得性免疫防御机制。2012年起CRISPR/Cas9被改造为基因编辑工具,并衍生出一系列高效、便捷的基因编辑工具,迅速在基础理论、基因诊断和临床治疗等研究领域中得到广泛应用。然而,CRISPR/Cas9也存在细胞毒性、脱靶效应和基因插入困难等一些亟待解决的问题,在一定程度上限制了CRISPR/Cas9的应用。Cpf1是2015年报道的一种新型CRISPR效应蛋白,具有许多与Cas9不同的特性,有利于克服CRISPR/Cas9应用中的一些限制。本文综述了近两年来对CRISPR/Cpf1的研究进展和应用,并对其应用前景和发展方向进行了展望。  相似文献   

17.
CRISPR‐Cas systems constitute an adaptive immune system that provides acquired resistance against phages and plasmids in prokaryotes. Upon invasion of foreign nucleic acids, some cells integrate short fragments of foreign DNA as spacers into the CRISPR locus to memorize the invaders and acquire resistance in the subsequent round of infection. This immunization step called adaptation is the least understood part of the CRISPR‐Cas immunity. We have focused here on the adaptation stage of Streptococcus thermophilus DGCC7710 type I‐E CRISPR4‐Cas (St4) system. Cas1 and Cas2 proteins conserved in nearly all CRISPR‐Cas systems are required for spacer acquisition. The St4 CRISPR‐Cas system is unique because the Cas2 protein is fused to an additional DnaQ exonuclease domain. Here, we demonstrate that St4 Cas1 and Cas2‐DnaQ form a multimeric complex, which is capable of integrating DNA duplexes with 3′‐overhangs (protospacers) in vitro. We further show that the DnaQ domain of Cas2 functions as a 3′–5′‐exonuclease that processes 3′‐overhangs of the protospacer to promote integration.  相似文献   

18.
Clustered regularly interspaced short palindromic repeats‐associated protein 9 (CRISPR‐Cas9) is a revolutionary technology that enables efficient genomic modification in many organisms. Currently, the wide use of Streptococcus pyogenes Cas9 (SpCas9) primarily recognizes sites harbouring a canonical NGG protospacer adjacent motif (PAM). The newly developed VQR (D1135V/R1335Q/T1337R) variant of Cas9 has been shown to cleave sites containing NGA PAM in rice, which greatly expanded the range of genome editing. However, the low editing efficiency of the VQR variant remains, which limits its wide application in genome editing. In this study, by modifying the single guide RNA (sgRNA) structure and strong endogenous promoters, we significantly increased the editing efficiency of the VQR variant. The modified CRISPR‐Cas9‐VQR system provides a robust toolbox for multiplex genome editing at sites containing noncanonical NGA PAM.  相似文献   

19.
20.
Most CRISPR‐type V nucleases are stimulated to cleave double‐stranded (ds) DNA targets by a T‐rich PAM, which restricts their targeting range. Here, we identify and characterize a new family of type V RNA‐guided nuclease, Cas12l, that exclusively recognizes a C‐rich (5''‐CCY‐3′) PAM. The organization of genes within its CRISPR locus is similar to type II‐B CRISPR‐Cas9 systems, but both sequence analysis and functional studies establish it as a new family of type V effector. Biochemical experiments show that Cas12l nucleases function optimally between 37 and 52°C, depending on the ortholog, and preferentially cut supercoiled DNA. Like other type V nucleases, it exhibits collateral nonspecific ssDNA and ssRNA cleavage activity that is triggered by ssDNA or dsDNA target recognition. Finally, we show that one family member, Asp2Cas12l, functions in a heterologous cellular environment, altogether, suggesting that this new group of CRISPR‐associated nucleases may be harnessed as genome editing reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号