首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
【目的】探究丙酮丁醇梭菌半胱氨酸合成代谢途径上铁氧还蛋白和胱硫醚-γ-裂解酶基因的功能。【方法】使用ClosTron系统对半胱氨酸合成途径上的铁氧还蛋白基因(fer)和胱硫醚-γ-裂解酶基因(mccB)进行失活,得到突变株;在不同硫源的培养基中进行分批发酵,分析突变株的生长特点;通过pH控制,使用限磷的连续发酵方法将丙酮丁醇梭菌维持在产酸期和产溶剂期,分析野生型菌株和突变株在连续发酵中的生长情况。【结果】成功构建Δfer和ΔmccB突变株。在分批发酵中,敲除fer基因的突变株无法利用硫酸盐作为硫源,但添加亚硫酸盐或半胱氨酸可以使其恢复生长;在以半胱氨酸为唯一硫源进行分批发酵时,其终浓度1 mmol/L时不会影响野生型与Δfer突变株的生长,但高于1 mmol/L时生长均会受到抑制。在连续发酵中,Δfer突变株不能在产溶剂阶段生长,添加过量的半胱氨酸也不能恢复生长;敲除mccB基因的突变株仍能在添加甲硫氨酸的培养基中生长,但最大OD仅为野生型的57%;相较于野生型,ΔmccB突变株在产酸期和产溶剂期的生长均受到抑制。【结论】fer基因为半胱氨酸合成途径中硫酸盐还原为亚硫酸盐的关键基因,其控制合成的半胱氨酸不能完全由外源的半胱氨酸替代,敲除后对生长的抑制主要表现在连续发酵中的产溶剂阶段。mccB基因参与调控甲硫氨酸转化为半胱氨酸的过程,其敲除会影响甲硫氨酸到半胱氨酸的转化,但不会阻断该生物反应过程。  相似文献   

2.
为改善丁醇发酵性能,提出丁酸胁迫与丙酮丁醇梭菌-酿酒酵母混合培养体系协同作用的新型丁醇发酵优化控制策略.7L发酵罐中,在溶剂生产期(24 h)添加4.0 g/L-broth的丁酸浓缩液和0.2 g-DCW/L-broth的酿酒酵母进行发酵,丁醇浓度、丁醇/丙酮比和总溶剂生产效率与对照相比分别提高35%、43%和79%,达到15.74 g/L、2.83和0.52 g/L/h的最高水平.若将精馏后溶剂混合物作为高效柴油添加剂,柴油添加剂中B∶A∶E比例可达74∶17∶9(w/w)的高水平,产品质量获得显著改善.试验及分析阐明该优化控制策略可大幅诱发赖氨酸的分泌及在梭菌中的吸收/利用,提高梭菌对高丁醇浓度环境的耐受能力,促进丁醇合成;可强化梭菌对底物利用的竞争能力、提高电子往复穿梭传递系统中还原力再生速率、产生更多用于丁醇合成的NADH.两者的协同作用大幅提高了丁醇发酵的整体性能.  相似文献   

3.
[目的]提高丙酮丁醇梭菌降解利用纤维素原料的能力。[方法]将甲基化的重组表达载体p SOS95-cel9电转化至丙酮丁醇梭菌ATCC824。[结果]成功构建重组菌株ATCC824/p SOS95-cel9。通过荧光定量PCR检验到外源纤维素酶基因cel9在重组丙丁梭菌中的转录,24 h的相对表达量是12 h的27. 1倍。重组菌ATCC824/p SOS95-cel9发酵滤纸产丙酮0. 05 g/L、丁醇0. 08 g/L、乙醇0. 71 g/L,发酵蔗渣水解液产0. 78 g/L、1. 09 g/L、0. 97 g/L,各溶剂产量均显著高于空质粒对照菌株。[结论]重组菌能利用滤纸及蔗渣水解液进行ABE发酵,外源纤维素酶基因cel9的重组表达提高了工程菌株利用纤维素原料的能力。  相似文献   

4.
添加有机酸对Clostridium acetobutylicum合成丙酮和丁醇的影响   总被引:2,自引:0,他引:2  
为提高丙酮-丁醇梭菌厌氧发酵生产丙酮和丁醇的能力,在发酵过程中添加有机酸(乙酸和丁酸),考察其对菌体生长、溶剂合成影响。实验表明:当添加1.5 g/L乙酸时能够促进菌体的生长,促进丙酮的合成,在600 nm处的最大OD值比参照值高出18.4%,丙酮的最终质量分数提高了21.05%,但不能促进丁醇的合成;当添加1.0g/L丁酸时能够促进菌体生长,促进丁醇的合成,在600 nm处的最大OD比参照值高22.29%,丁醇的最终质量分数比对照组提高了24.32%,但不能促进丙酮的合成。  相似文献   

5.
在丙酮丁醇梭菌连续传代过程中,添加乙酸钠可增强其稳定性,同时在未添加乙酸钠的发酵液中分离获得溶剂产量明显降低的退化菌株DNU83,其丁醇产量为2.33 g·L-1,仅为初始菌株的1/6.培养基中添加乙酸钠、丁酸钠或K2 HPO4等弱酸盐均可恢复退化菌株的产溶剂能力,如同时添加苄基紫精,可显著促进丁醇合成.7%玉米培养基中添加4 g·L -1 K2 HPO4和30 mg·L-1苄基紫精,丁醇产量可达18.01 g·L-1,总溶剂21.59 g·L-1,丁醇比为83.43%,丁醇产量较未退化菌株NU22提高24.09%.  相似文献   

6.
丙酮丁醇梭菌的遗传操作系统   总被引:1,自引:0,他引:1  
董红军  张延平  李寅 《生物工程学报》2010,26(10):1372-1378
丙酮丁醇梭菌是极具潜力的替代燃料——生物丁醇的合成菌,受到各国研究者的普遍关注。丙酮丁醇梭菌菌株改造是生物丁醇产业化进程中的一项重要工作,其中遗传操作是核心内容之一。以下对丙酮丁醇梭菌的遗传操作系统的发展历史、种类和原理进行了综述,分析了目前几种遗传操作系统的局限性,并对其发展进行了展望。  相似文献   

7.
探究敲除精氨酸代谢途径关键酶ast E对大肠杆菌抵御丁醇胁迫能力的影响。借助氨基酸分析仪全面分析ast E基因敲除对细胞内外游离氨基酸水平的变化。同时,通过测定ast E缺失突变株抵御丁醇和酸胁迫的能力,并分析两者之间的联系。研究表明:与对照菌株BW25113相比,突变株△ast E抵御丁醇胁迫和酸胁迫的能力显著提高,分别提高了30%(8 g/L丁醇)和54.5%(p H 3.0)。同时,通过胞内外氨基酸分析发现,高浓度丁醇胁迫可抑制BW25113和△ast E合成谷氨酸的能力,使其浓度分别降低73.6%和89.1%。在此基础上,外源添加精氨酸实验表明:适量精氨酸能有效提高细胞抵御高浓度丁醇胁迫的能力。敲除精氨酸代谢途径关键酶ast E可显著提高大肠杆菌抵御丁醇胁迫的能力,且其调控机制与耐酸胁迫密切相关。  相似文献   

8.
以蛇足石杉Huperzia serrata内生真菌盘长孢状刺盘孢Cg01菌株为研究对象,利用PEG介导的同源重组转化体系,对Cg01组蛋白甲基化酶基因(histone methyltransferases,HMT)CgClr4和组蛋白去乙酰化酶基因(histone deacetylase,HDAC)CgClr3CgSir2进行基因敲除与回补,并通过实时荧光定量PCR(RT-qPCR)检测了回补株中对应基因表达量以及高效液相色谱HPLC检测突变体菌株中石杉碱甲huperzine A(HupA)产量。结果显示3个基因敲除突变体菌株ΔCgClr4、ΔCgClr3、ΔCgSir2的HupA产量分别为255μg/L、270μg/L、244μg/L,与野生型菌株相比分别下降了21.3%、16.6%、24.7%。在基因回补突变体菌株ΔCgClr4/CgClr4、ΔCgClr3/CgClr3、ΔCgSir2/CgSir2中,相应回补基因表达均与野生型无显著性差异,其HupA产量分别为351.9μg/L、334.7μg/L、331μg/L,回补菌株的HupA产量回复到野生型水平。结果表明这3个基因均具有调控内生真菌盘长孢状刺盘孢Cg01合成HupA的作用,为研究蛇足石杉内生真菌中石杉碱甲的合成调控机制提供了理论基础和新的思路。  相似文献   

9.
利用甜菜糖蜜补料发酵生产丁醇   总被引:2,自引:1,他引:1  
从土壤中分离出1株适合利用甜菜糖蜜发酵生产丁醇的丙酮丁醇梭菌(Clostridium acetobutylicum)2N,通过优化发酵条件,得到最适发酵温度为33℃,玉米浆最适添加量为15g/L,发现甜菜糖蜜中还原糖质量浓度高于50g/L时影响菌株的生长和溶剂生产。以补料分批发酵方式降低底物抑制,33℃发酵48h后,丁醇和总溶剂的质量浓度分别达到14.15g/L和19.65g/L,丁醇质量分数超过70%。  相似文献   

10.
通过高浓度丁醇浸泡处理丙酮丁醇梭菌(Clostridiumacetobutylicum)CL-2,筛选得到一株丁醇耐受能力提高并溶剂产量增加的菌株BR30—2,丁醇产量达11.77g/L,比CL-2提高了16.65%。以BR30—2作为出发菌株,进行N+束注入诱变,筛选得到高产菌株BH.9,丁醇产量达14.5g/L,总溶剂为23.14g/L。在BH-9发酵过程中添加0.1%丁酸钠,丁醇产量达到16.59g/L,丁醇比例提高至67.38%。  相似文献   

11.
研究在培养基中加入不同电子载体对丁醇发酵的影响。结果表明:添加微量的苄基紫精可以促进丁醇的产生,同时可强烈抑制丙酮的合成,丁醇体积分数由66.92%提高到82.35%。苄基紫精可促进菌株快速进入产溶剂期,发酵周期明显缩短,丁醇生产强度显著提高。7%玉米培养基中加入40 mg/L苄基紫精,丁醇产量最高达16.10 g/L,生产强度为0.37 g/(L.h),分别较对照提高10.96%和60.87%。在初始丁醇体积分数较低的条件下,苄基紫精对丁醇合成的促进作用更明显。  相似文献   

12.
13.
Using gene expression reporter vectors, we examined the activity of the spoIIE promoter in wild-type and spo0A-deleted strains of Clostridium acetobutylicum ATCC 824. In wild-type cells, the spoIIE promoter is active in a transient manner during late solventogenesis, but in strain SKO1, where the sporulation initiator spo0A is disrupted, no spoIIE promoter activity is detectable at any stage of growth. Strains 824(pMSpo) and 824(pASspo) were created to overexpress spoIIE and to decrease spoIIE expression via antisense RNA targeted against spoIIE, respectively. Some cultures of strains 824(pMSpo) degenerated during fermentations by losing the pSOL1 megaplasmid and hence did not produce the solvents ethanol, acetone, and butanol. The frequent degeneration event was shown to require an intact copy of spoIIE. Nondegenerate cultures of 824(pMSpo) exhibited normal growth and solvent production. Strain 824(pASspo) exhibited prolonged solventogenesis characterized by increased production of ethanol (225%), acetone (43%), and butanol (110%). Sporulation in strains harboring pASspo was significantly delayed, with sporulating cells exhibiting altered morphology. These results suggest that SpoIIE has no direct effect on the control of solventogenesis and that the changes in solvent production in spoIIE-downregulated cells are mediated by effects on the cell during sporulation.  相似文献   

14.
The cyclopropane fatty acid synthase gene (cfa) of Clostridium acetobutylicum ATCC 824 was cloned and overexpressed under the control of the clostridial ptb promoter. The function of the cfa gene was confirmed by complementation of an Escherichia coli cfa-deficient strain in terms of fatty acid composition and growth rate under solvent stress. Constructs expressing cfa were introduced into C. acetobutylicum hosts and cultured in rich glucose broth in static flasks without pH control. Overexpression of the cfa gene in the wild type and in a butyrate kinase-deficient strain increased the cyclopropane fatty acid content of early-log-phase cells as well as initial acid and butanol resistance. However, solvent production in the cfa-overexpressing strain was considerably decreased, while acetate and butyrate levels remained high. The findings suggest that overexpression of cfa results in changes in membrane properties that dampen the full induction of solventogenesis. The overexpression of a marR homologous gene preceding the cfa gene in the clostridial genome resulted in reduced cyclopropane fatty acid accumulation.  相似文献   

15.
Efficient cofermentation of D-glucose, D-xylose, and L-arabinose, three major sugars present in lignocellulose, is a fundamental requirement for cost-effective utilization of lignocellulosic biomass. The Gram-positive anaerobic bacterium Clostridium acetobutylicum, known for its excellent capability of producing ABE (acetone, butanol, and ethanol) solvent, is limited in using lignocellulose because of inefficient pentose consumption when fermenting sugar mixtures. To overcome this substrate utilization defect, a predicted glcG gene, encoding enzyme II of the D-glucose phosphoenolpyruvate-dependent phosphotransferase system (PTS), was first disrupted in the ABE-producing model strain Clostridium acetobutylicum ATCC 824, resulting in greatly improved D-xylose and L-arabinose consumption in the presence of D-glucose. Interestingly, despite the loss of GlcG, the resulting mutant strain 824glcG fermented D-glucose as efficiently as did the parent strain. This could be attributed to residual glucose PTS activity, although an increased activity of glucose kinase suggested that non-PTS glucose uptake might also be elevated as a result of glcG disruption. Furthermore, the inherent rate-limiting steps of the D-xylose metabolic pathway were observed prior to the pentose phosphate pathway (PPP) in strain ATCC 824 and then overcome by co-overexpression of the D-xylose proton-symporter (cac1345), D-xylose isomerase (cac2610), and xylulokinase (cac2612). As a result, an engineered strain (824glcG-TBA), obtained by integrating glcG disruption and genetic overexpression of the xylose pathway, was able to efficiently coferment mixtures of D-glucose, D-xylose, and L-arabinose, reaching a 24% higher ABE solvent titer (16.06 g/liter) and a 5% higher yield (0.28 g/g) compared to those of the wild-type strain. This strain will be a promising platform host toward commercial exploitation of lignocellulose to produce solvents and biofuels.  相似文献   

16.
ABSTRACT: BACKGROUND: Previously we have developed a butanol tolerant mutant of Clostridium acetobutylicum, Rh8, from the wild type strain DSM 1731. Strain Rh8 can tolerate up to 19 g/L butanol, with solvent titer improved accordingly, thus exhibiting industrial application potential. To test if strain Rh8 can be used for production of high level mixed alcohols, a single secondary alcohol dehydrogenase from Clostridium beijerinckii NRRL B593 was overexpressed in strain Rh8 under the control of constitutive thl promoter. RESULTS: The heterogenous gene sADH was functionally expressed in C. acetobutylicum Rh8. This simple, one-step engineering approach led to the complete conversion of acetone into isopropanol, achieving a total alcohol titer of 23.88 g/l (7.6 g/l isopropanol, 15 g/l butanol, and 1.28 g/l ethanol) with a yield to glucose of 31.42%. The acid (butyrate and acetate) assimilation rate in isopropanol producing strain Rh8(psADH) was increased. CONCLUSIONS: The improved butanol tolerance and the enhanced solvent biosynthesis machinery in strain Rh8 is beneficial for production of high concentration of mixed alcohols. Strain Rh8 thus can be considered as a good host for further engineering of solvent/alcohol production.  相似文献   

17.
The toxicity of n-butanol in microbial fermentations limits its formation. The stress response of Clostridium acetobutylicum involves various stress proteins and therefore, over-expression of genes encoding stress proteins constitutes an option to improve solvent tolerance. Over-expression of groESL, grpE and htpG, significantly improved butanol tolerance of C. acetobutylicum. Whereas the wild type and vector control strain did not survive 2?% (v/v) butanol for 2?h, the recombinant strains showed 45?% (groESL), 25?% (grpE) and 56?% (htpG), respectively, of the initial c.f.u. after 2?h of butanol exposure. As previously, over-expression of groESL led to higher butanol production rates, but the novel strains over-expressing grpE or htpG produced only 51 and 68?%, respectively, of the wild type butanol concentrations after 72?h clearly differentiating butanol tolerance and production. Not only butanol tolerance but also the adaptation to butanol in successive stress experiments was significantly facilitated by increased levels of GroESL, GrpE and HtpG. Re-transformation and sequence analyses of the plasmids confirmed that not the plasmids, but the host cells evolved to a more robust phenotype.  相似文献   

18.
Gao X  Zhao H  Zhang G  He K  Jin Y 《Current microbiology》2012,65(2):128-132
Genome shuffling was applied to increase ABE production of the strict anaerobe C. acetobutylicum CICC 8012. By using physical and chemical mutagenesis, strains with superior streptomycin sulfate, 2-deoxy-D-glucose and butanol tolerance levels were isolated. These strains were used for genome shuffling. The best performing strain F2-GA was screened after two rounds of genome shuffling. With 55 g glucose/l as carbon source, F2-GA produced 22.21 g ABE/l in 72 h and ABE yield reached 0.42 g/g which was about 34.53 % improvement compared to the wild type. Fermentation parameters and gene expression of several key enzymes in ABE metabolic pathways were varied significantly between F2-GA and the wild type. These results demonstrated the potential use of genome shuffling to microbial breeding which were difficult to deal with traditional methods.  相似文献   

19.
Lipid II flippases play an essential role in cell growth and the maintenance of cell shape in many rod‐shaped bacteria. The putative lipid II flippase RodA is an integral membrane protein and member of the SEDS (shape, elongation, division and sporulation) protein family. In contrast to its homologues in Escherichia coli and Bacillus subtilis little is known about the role of RodA in actinobacteria. In this study, we describe the localization and function of RodA in Corynebacterium glutamicum, a rod‐shaped, apically growing actinobacterium. RodA‐GFP localizes exclusively at the cell poles. Surprisingly, time‐lapse microscopy revealed that apical cell growth is sustained in a rodA deletion strain. However, growth rates and antibiotic susceptibility are altered. In the absence of RodA, it appears that apical growth is driven by lateral diffusion of lipid II that is likely flipped by the septal flippase, FtsW. Furthermore, we applied a previously described synthetic in vivo system in combination with FRET to identify an interaction between C. glutamicum RodA and the polar growth organizing protein DivIVA.  相似文献   

20.
In microorganisms, the enzyme acetate kinase (AK) catalyses the formation of ATP from ADP by de-phosphorylation of acetyl phosphate into acetic acid. A mutant strain of Clostridium acetobutylicum lacking acetate kinase activity is expected to have reduced acetate and acetone production compared to the wild type. In this work, a C. acetobutylicum mutant strain with a selectively disrupted ack gene, encoding AK, was constructed and genetically and physiologically characterized. The ack (-) strain showed a reduction in acetate kinase activity of more than 97% compared to the wild type. The fermentation profiles of the ack (-) and wild-type strain were compared using two different fermentation media, CGM and CM1. The latter contains acetate and has a higher iron and magnesium content than CGM. In general, fermentations by the mutant strain showed a clear shift in the timing of peak acetate production relative to butyrate and had increased acid uptake after the onset of solvent formation. Specifically, in acetate containing CM1 medium, acetate production was reduced by more than 80% compared to the wild type under the same conditions, but both strains produced similar final amounts of solvents. Fermentations in CGM showed similar peak acetate and butyrate levels, but increased acetoin (60%), ethanol (63%) and butanol (16%) production and reduced lactate (-50%) formation by the mutant compared to the wild type. These findings are in agreement with the proposed regulatory function of butyryl phosphate as opposed to acetyl phosphate in the metabolic switch of solventogenic clostridia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号