首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crop wild relatives (CWR) provide an important source of allelic diversity for any given crop plant species for counteracting the erosion of genetic diversity caused by domestication and elite breeding bottlenecks. Hordeum bulbosum L. is representing the secondary gene pool of the genus Hordeum. It has been used as a source of genetic introgressions for improving elite barley germplasm (Hordeum vulgare L.). However, genetic introgressions from Hbulbosum have yet not been broadly applied, due to a lack of suitable molecular tools for locating, characterizing, and decreasing by recombination and marker‐assisted backcrossing the size of introgressed segments. We applied next‐generation sequencing (NGS) based strategies for unlocking genetic diversity of three diploid introgression lines of cultivated barley containing chromosomal segments of its close relative H. bulbosum. Firstly, exome capture‐based (re)‐sequencing revealed large numbers of single nucleotide polymorphisms (SNPs) enabling the precise allocation of H. bulbosum introgressions. This SNP resource was further exploited by designing a custom multiplex SNP genotyping assay. Secondly, two‐enzyme‐based genotyping‐by‐sequencing (GBS) was employed to allocate the introgressed H. bulbosum segments and to genotype a mapping population. Both methods provided fast and reliable detection and mapping of the introgressed segments and enabled the identification of recombinant plants. Thus, the utilization of H. bulbosum as a resource of natural genetic diversity in barley crop improvement will be greatly facilitated by these tools in the future.  相似文献   

2.
Previously we extended the utility of mapping‐by‐sequencing by combining it with sequence capture and mapping sequence data to pseudo‐chromosomes that were organized using wheat–Brachypodium synteny. This, with a bespoke haplotyping algorithm, enabled us to map the flowering time locus in the diploid wheat Triticum monococcum L. identifying a set of deleted genes (Gardiner et al., 2014). Here, we develop this combination of gene enrichment and sliding window mapping‐by‐synteny analysis to map the Yr6 locus for yellow stripe rust resistance in hexaploid wheat. A 110 MB NimbleGen capture probe set was used to enrich and sequence a doubled haploid mapping population of hexaploid wheat derived from an Avalon and Cadenza cross. The Yr6 locus was identified by mapping to the POPSEQ chromosomal pseudomolecules using a bespoke pipeline and algorithm (Chapman et al., 2015). Furthermore the same locus was identified using newly developed pseudo‐chromosome sequences as a mapping reference that are based on the genic sequence used for sequence enrichment. The pseudo‐chromosomes allow us to demonstrate the application of mapping‐by‐sequencing to even poorly defined polyploidy genomes where chromosomes are incomplete and sub‐genome assemblies are collapsed. This analysis uniquely enabled us to: compare wheat genome annotations; identify the Yr6 locus – defining a smaller genic region than was previously possible; associate the interval with one wheat sub‐genome and increase the density of SNP markers associated. Finally, we built the pipeline in iPlant, making it a user‐friendly community resource for phenotype mapping.  相似文献   

3.
Broadening the genetic base of crops is crucial for developing varieties to respond to global agricultural challenges such as climate change. Here, we analysed a diverse panel of 371 domesticated lines of the model crop barley to explore the genetics of crop adaptation. We first collected exome sequence data and phenotypes of key life history traits from contrasting multi‐environment common garden trials. Then we applied refined statistical methods, including some based on exomic haplotype states, for genotype‐by‐environment (G×E) modelling. Sub‐populations defined from exomic profiles were coincident with barley's biology, geography and history, and explained a high proportion of trial phenotypic variance. Clear G×E interactions indicated adaptation profiles that varied for landraces and cultivars. Exploration of circadian clock‐related genes, associated with the environmentally adaptive days to heading trait (crucial for the crop's spread from the Fertile Crescent), illustrated complexities in G×E effect directions, and the importance of latitudinally based genic context in the expression of large‐effect alleles. Our analysis supports a gene‐level scientific understanding of crop adaption and leads to practical opportunities for crop improvement, allowing the prioritisation of genomic regions and particular sets of lines for breeding efforts seeking to cope with climate change and other stresses.  相似文献   

4.
5.
6.
An RFLP map constructed from 99 doubled haploid lines of a cross between two spring barley varieties (Blenheim × Kym) was used to localize quantitative trait loci (QTL) controlling grain yield and yield components by marker regression and single-marker analysis. Trials were conducted over three years. Genotype-by-year interaction was detected for plant grain weight and ear grain weight so they were analysed separately for each year. None was detected for thousand-grain weight and ear grain number so data were pooled over years. A total of eleven QTL were detected for plant grain weight over two years and fourteen for ear grain weight over three years. Seven QTL were detected for plot yield. The locus with the largest effect was on chromosome 2(2H)L and accounted for 19% of the variation in the progeny. Eight QTL were detected for thousand-grain weight and five for ear grain number. Many of the QTL detected were in comparable positions in each year. Yield and yield components were only partly correlated. Comparisons based on common RFLP markers showed that some QTL were found in positions similar to those identified in other studies. For a number of QTL the identification of linked markers provided suitable opportunities for marker-assisted selection and improvement of barley and reference markers with which to analyse the homoeologous chromosome regions of wheat and other cereals.  相似文献   

7.
By combining high‐throughput sequencing with target enrichment (‘hybridization capture’), researchers are able to obtain molecular data from genomic regions of interest for projects that are otherwise constrained by sample quality (e.g. degraded and contamination‐rich samples) or a lack of a priori sequence information (e.g. studies on nonmodel species). Despite the use of hybridization capture in various fields of research for many years, the impact of enrichment conditions on capture success is not yet thoroughly understood. We evaluated the impact of a key parameter – hybridization temperature – on the capture success of mitochondrial genomes across the carnivoran family Felidae. Capture was carried out for a range of sample types (fresh, archival, ancient) with varying levels of sequence divergence between bait and target (i.e. across a range of species) using pools of individually indexed libraries on Agilent SureSelect? arrays. Our results suggest that hybridization capture protocols require specific optimization for the sample type that is being investigated. Hybridization temperature affected the proportion of on‐target sequences following capture: for degraded samples, we obtained the best results with a hybridization temperature of 65 °C, while a touchdown approach (65 °C down to 50 °C) yielded the best results for fresh samples. Evaluation of capture performance at a regional scale (sliding window approach) revealed no significant improvement in the recovery of DNA fragments with high sequence divergence from the bait at any of the tested hybridization temperatures, suggesting that hybridization temperature may not be the critical parameter for the enrichment of divergent fragments.  相似文献   

8.
The computer program exonsampler automates the sampling of thousands of exon sequences from publicly available reference genome sequences and gene annotation databases. It was designed to provide exon sequences for the efficient, next‐generation gene sequencing method called exon capture. The exon sequences can be sampled by a list of gene name abbreviations (e.g. IFNG, TLR1), or by sampling exons from genes spaced evenly across chromosomes. It provides a list of genomic coordinates (a bed file), as well as a set of sequences in fasta format. User‐adjustable parameters for collecting exon sequences include a minimum and maximum acceptable exon length, maximum number of exonic base pairs (bp) to sample per gene, and maximum total bp for the entire collection. It allows for partial sampling of very large exons. It can preferentially sample upstream (5 prime) exons, downstream (3 prime) exons, both external exons, or all internal exons. It is written in the Python programming language using its free libraries. We describe the use of exonsampler to collect exon sequences from the domestic cow (Bos taurus) genome for the design of an exon‐capture microarray to sequence exons from related species, including the zebu cow and wild bison. We collected ~10% of the exome (~3 million bp), including 155 candidate genes, and ~16 000 exons evenly spaced genomewide. We prioritized the collection of 5 prime exons to facilitate discovery and genotyping of SNPs near upstream gene regulatory DNA sequences, which control gene expression and are often under natural selection.  相似文献   

9.
Salicylic acid (SA) plays an important role in signal transduction and disease resistance. In Arabidopsis, SA can be made by either of two biosynthetic branches, one involving isochorismate synthase (ICS) and the other involving phenylalanine ammonia‐lyase (PAL). However, the biosynthetic pathway and the importance of SA remain largely unknown in Triticeae. Here, we cloned one ICS and seven PAL genes from barley, and studied their functions by their overexpression and suppression in that plant. Suppression of the ICS gene significantly delayed plant growth, whereas PAL genes, both overexpressed and suppressed, had no significant effect on plant growth. Similarly, suppression of ICS compromised plant resistance to Fusarium graminearum, whereas similar suppression of PAL genes had no significant effect. We then focused on transgenic plants with ICS. In a leaf‐based test with F. graminearum, transgenic plants with an up‐regulated ICS were comparable with wild‐type control plants. By contrast, transgenic plants with a suppressed ICS lost the ability to accumulate SA during pathogen infection and were also more susceptible to Fusarium than the wild‐type controls. This suggests that ICS plays a unique role in SA biosynthesis in barley, which, in turn, confers a basal resistance to F. graminearum by modulating the accumulation of H2O2, and reactive oxygen‐associated enzymatic activities. Although SA mediates systemic acquired resistance (SAR) in dicots, there was no comparable SAR response to F. graminearum in barley. This study expands our knowledge about SA biosynthesis in barley and proves that SA confers basal resistance to fungal pathogens.  相似文献   

10.
DNA barcodes are useful for species discovery and species identification, but obtaining barcodes currently requires a well‐equipped molecular laboratory and is time‐consuming, and/or expensive. We here address these issues by developing a barcoding pipeline for Oxford Nanopore MinION? and demonstrating that one flow cell can generate barcodes for ~500 specimens despite the high basecall error rates of MinION? reads. The pipeline overcomes these errors by first summarizing all reads for the same tagged amplicon as a consensus barcode. Consensus barcodes are overall mismatch‐free but retain indel errors that are concentrated in homopolymeric regions. They are addressed with an optional error correction pipeline that is based on conserved amino acid motifs from publicly available barcodes. The effectiveness of this pipeline is documented by analysing reads from three MinION? runs that represent three different stages of MinION? development. They generated data for (i) 511 specimens of a mixed Diptera sample, (ii) 575 specimens of ants and (iii) 50 specimens of Chironomidae. The run based on the latest chemistry yielded MinION? barcodes for 490 of the 511 specimens which were assessed against reference Sanger barcodes (N = 471). Overall, the MinION? barcodes have an accuracy of 99.3%–100% with the number of ambiguous bases after correction ranging from <0.01% to 1.5% depending on which correction pipeline is used. We demonstrate that it requires ~2 hr of sequencing to gather all information needed for obtaining reliable barcodes for most specimens (>90%). We estimate that up to 1,000 barcodes can be generated in one flow cell and that the cost per barcode can be 相似文献   

11.
《Current biology : CB》2023,33(2):252-262.e4
  1. Download : Download high-res image (169KB)
  2. Download : Download full-size image
  相似文献   

12.
The European rabbit (Oryctolagus cuniculus) is a domesticated species with one of the broadest ranges of economic and scientific applications and fields of investigation. Rabbit genome information and assembly are available (oryCun2.0), but so far few studies have investigated its variability, and massive discovery of polymorphisms has not been published yet for this species. Here, we sequenced two reduced representation libraries (RRLs) to identify single nucleotide polymorphisms (SNPs) in the rabbit genome. Genomic DNA of 10 rabbits belonging to different breeds was pooled and digested with two restriction enzymes (HaeIII and RsaI) to create two RRLs which were sequenced using the Ion Torrent Personal Genome Machine. The two RRLs produced 2 917 879 and 4 046 871 reads, for a total of 280.51 Mb (248.49 Mb with quality >20) and 417.28 Mb (360.89 Mb with quality >20) respectively of sequenced DNA. About 90% and 91% respectively of the obtained reads were mapped on the rabbit genome, covering a total of 15.82% of the oryCun2.0 genome version. The mapping and ad hoc filtering procedures allowed to reliably call 62 491 SNPs. SNPs in a few genomic regions were validated by Sanger sequencing. The Variant Effect Predictor Web tool was used to map SNPs on the current version of the rabbit genome. The obtained results will be useful for many applied and basic research programs for this species and will contribute to the development of cost‐effective solutions for high‐throughput SNP genotyping in the rabbit.  相似文献   

13.
14.
Efficient methods for constructing 16S tag amplicon libraries for pyrosequencing are needed for the rapid and thorough screening of infectious bacterial diversity from host tissue samples. Here we have developed a double‐nested PCR methodology that generates 16S tag amplicon libraries from very small amounts of bacteria/host samples. This methodology was tested for 133 kidney samples from the lake whitefish Coregonus clupeaformis (Salmonidae) sampled in five different lake populations. The double‐nested PCR efficiency was compared with two other PCR strategies: single primer pair amplification and simple nested PCR. The double‐nested PCR was the only amplification strategy to provide highly specific amplification of bacterial DNA. The resulting 16S amplicon libraries were synthesized and pyrosequenced using 454 FLX technology to analyse the variation of pathogenic bacteria abundance. The proportion of the community sequenced was very high (Good’s coverage estimator; mean = 95.4%). Furthermore, there were no significant differences of sequence coverage among samples. Finally, the occurrence of chimeric amplicons was very low. Therefore, the double‐nested PCR approach provides a rapid, informative and cost‐effective method for screening fish immunobiomes and most likely applicable to other low‐density microbiomes as well.  相似文献   

15.
Although upland cotton (Gossypium hirsutism L.) originated in the tropics, this early maturity cotton can be planted as far north as 46°N in China due to the accumulation of numerous phenotypic and physiological adaptations during domestication. However, how the genome of early maturity cotton has been altered by strong human selection remains largely unknown. Herein, we report a cotton genome variation map generated by the resequencing of 436 cotton accessions. Whole‐genome scans for sweep regions identified 357 putative selection sweeps covering 4.94% (112 Mb) of the upland cotton genome, including 5184 genes. These genes were functionally related to flowering time control, hormone catabolism, ageing and defence response adaptations to environmental changes. A genome‐wide association study (GWAS) for seven early maturity traits identified 307 significant loci, 22.48% (69) of which overlapped with putative selection sweeps that occurred during the artificial selection of early maturity cotton. Several previously undescribed candidate genes associated with early maturity were identified by GWAS. This study provides insights into the genetic basis of early maturity in upland cotton as well as breeding resources for cotton improvement.  相似文献   

16.
Museum specimens provide a wealth of information to biologists, but obtaining genetic data from formalin‐fixed and fluid‐preserved specimens remains challenging. While DNA sequences have been recovered from such specimens, most approaches are time‐consuming and produce low data quality and quantity. Here, we use a modified DNA extraction protocol combined with high‐throughput sequencing to recover DNA from formalin‐fixed and fluid‐preserved snakes that were collected over a century ago and for which little or no modern genetic materials exist in public collections. We successfully extracted DNA and sequenced ultraconserved elements ( = 2318 loci) from 10 fluid‐preserved snakes and included them in a phylogeny with modern samples. This phylogeny demonstrates the general use of such specimens in phylogenomic studies and provides evidence for the placement of enigmatic snakes, such as the rare and never‐before sequenced Indian Xylophis stenorhynchus. Our study emphasizes the relevance of museum collections in modern research and simultaneously provides a protocol that may prove useful for specimens that have been previously intractable for DNA sequencing.  相似文献   

17.
Hereditary neuropathies comprise a wide variety of chronic diseases associated to more than 80 genes identified to date. We herein examined 612 index patients with either a Charcot‐Marie‐Tooth phenotype, hereditary sensory neuropathy, familial amyloid neuropathy, or small fiber neuropathy using a customized multigene panel based on the next generation sequencing technique. In 121 cases (19.8%), we identified at least one putative pathogenic mutation. Of these, 54.4% showed an autosomal dominant, 33.9% an autosomal recessive, and 11.6% an X‐linked inheritance. The most frequently affected genes were PMP22 (16.4%), GJB1 (10.7%), MPZ, and SH3TC2 (both 9.9%), and MFN2 (8.3%). We further detected likely or known pathogenic variants in HINT1, HSPB1, NEFL, PRX, IGHMBP2, NDRG1, TTR, EGR2, FIG4, GDAP1, LMNA, LRSAM1, POLG, TRPV4, AARS, BIC2, DHTKD1, FGD4, HK1, INF2, KIF5A, PDK3, REEP1, SBF1, SBF2, SCN9A, and SPTLC2 with a declining frequency. Thirty‐four novel variants were considered likely pathogenic not having previously been described in association with any disorder in the literature. In one patient, two homozygous mutations in HK1 were detected in the multigene panel, but not by whole exome sequencing. A novel missense mutation in KIF5A was considered pathogenic because of the highly compatible phenotype. In one patient, the plasma sphingolipid profile could functionally prove the pathogenicity of a mutation in SPTLC2. One pathogenic mutation in MPZ was identified after being previously missed by Sanger sequencing. We conclude that panel based next generation sequencing is a useful, time‐ and cost‐effective approach to assist clinicians in identifying the correct diagnosis and enable causative treatment considerations.

  相似文献   

18.
Multiparental genetic mapping populations such as nested‐association mapping (NAM) have great potential for investigating quantitative traits and associated genomic regions leading to rapid discovery of candidate genes and markers. To demonstrate the utility and power of this approach, two NAM populations, NAM_Tifrunner and NAM_Florida‐07, were used for dissecting genetic control of 100‐pod weight (PW) and 100‐seed weight (SW) in peanut. Two high‐density SNP‐based genetic maps were constructed with 3341 loci and 2668 loci for NAM_Tifrunner and NAM_Florida‐07, respectively. The quantitative trait locus (QTL) analysis identified 12 and 8 major effect QTLs for PW and SW, respectively, in NAM_Tifrunner, and 13 and 11 major effect QTLs for PW and SW, respectively, in NAM_Florida‐07. Most of the QTLs associated with PW and SW were mapped on the chromosomes A05, A06, B05 and B06. A genomewide association study (GWAS) analysis identified 19 and 28 highly significant SNP–trait associations (STAs) in NAM_Tifrunner and 11 and 17 STAs in NAM_Florida‐07 for PW and SW, respectively. These significant STAs were co‐localized, suggesting that PW and SW are co‐regulated by several candidate genes identified on chromosomes A05, A06, B05, and B06. This study demonstrates the utility of NAM population for genetic dissection of complex traits and performing high‐resolution trait mapping in peanut.  相似文献   

19.
Biodiversity, phylogeography and population genetic studies will be revolutionized by access to large data sets thanks to next‐generation sequencing methods. In this study, we develop an easy and cost‐effective protocol for in‐solution enrichment hybridization capture of complete chloroplast genomes applicable at deep‐multiplexed levels. The protocol uses cheap in‐house species‐specific probes developed via long‐range PCR of the entire chloroplast. Barcoded libraries are constructed, and in‐solution enrichment of the chloroplasts is carried out using the probes. This protocol was tested and validated on six economically important West African crop species, namely African rice, pearl millet, three African yam species and fonio. For pearl millet, we also demonstrate the effectiveness of this protocol to retrieve 95% of the sequence of the whole chloroplast on 95 multiplexed individuals in a single MiSeq run at a success rate of 95%. This new protocol allows whole chloroplast genomes to be retrieved at a modest cost and will allow unprecedented resolution for closely related species in phylogeography studies using plastomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号