首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A porcine relaxin radioimmunoassay was developed to evaluate the profile of immunoreactive relaxin in rabbit plasma. Relaxin was nondetectable in pseudopregnant (Days 1, 4, 5-8, 12, and 16), nonpregnant, and male rabbits. However, in pregnant rabbits, relaxin was detected during the peri-implantation period (Days 4-9). Peak concentrations were reached on Day 15 and were maintained until parturition (Day 32). Relaxin concentrations abruptly decreased on Day 1 postpartum to low but detectable concentrations that were unchanged during the first week postpartum. In contrast, progesterone concentrations peaked earlier (Day 13), decreased after Day 25, and were not detectable on Day 1 postpartum. The effect of ovariectomy on the profile of plasma relaxin was evaluated. Four pregnant rabbits were ovariectomized (Day 13) and treated with medroxyprogesterone acetate to maintain pregnancy. As in normal pregnant rabbits, relaxin was observed initially during the peri-implantation period (Days 4-9) and increased to peak concentrations by Day 16. These concentrations were maintained until parturition and abruptly decreased on Day 1 postpartum to low yet detectable concentrations during the first week postpartum. The concentrations of relaxin in the plasma of ovariectomized medroxyprogesterone-treated rabbits were not different from those in three sham controls. These results indicate that the ovary is not a significant source of relaxin in pregnant rabbits. The unique observation of the presence of relaxin during the peri-implantation period suggests that this hormone has a role in preparing the rabbit uterus for implantation. The continued presence of relaxin during the first week postpartum may represent residual hormone, or it may suggest a physiological role during the early postpartum period.  相似文献   

2.
The presence of immunoreactive relaxin was studied in corpora lutea of sows during the oestrous cycle and early pregnancy by immunohistochemistry and radioimmunoassay using three different anti-relaxin sera. Sections were immunostained using the peroxidase-anti-peroxidase or the immunogold-silver technique. Before Day 14, staining in corpora lutea from non-pregnant and pregnant animals was indistinguishable. With all antisera, no immunostaining was seen on Day 3, but was detected on Days 5-7 in cells from the theca interna. In non-pregnant animals, this immunostaining decreased and by Day 15 only an occasional large cell in the centre of the corpus luteum was stained. No staining was seen by Day 22. The relaxin content of corpora lutea measured by radioimmunoassay remained low throughout the luteal phase. In contrast, the amount of immunoreactive relaxin in corpora lutea rose dramatically (140-fold) between Days 11 and 14 of pregnancy and by Day 14 of pregnancy immunostaining was seen in the majority of large luteal cells. By Day 20 of pregnancy the concentrations of immunoreactive relaxin had further increased. Histochemical staining for alkaline phosphatase suggested that, while the relaxin-immunoreactive cells seen in the early luteal phase may be theca-derived, those during early pregnancy may be derived from the granulosa. The results are compatible with the suggestion that relaxin is produced by theca-derived cells during the early luteal phase and that between Days 11 and 14 there is a switch in the site of relaxin synthesis from theca-derived cells to granulosa-derived large luteal cells. In the absence of luteolysis, as during pregnancy, this switch is accompanied by a dramatic increase in relaxin synthesis.  相似文献   

3.
The objective of this study was to determine the tissue source of relaxin in pregnant hamsters by immunocytochemical techniques. Ovarian, uterine, and placental tissues were recovered from hamsters on Days 8, 10, 12, 14, and 15 of gestation and processed for light microscopy. Relaxin immunoreactivity was localized in tissue sections by the avidin-biotin-peroxidase technique using antiserum to porcine relaxin. On Day 8 of gestation, relaxin immunoreactivity was localized in primary giant trophoblast cells (GTC-1s) adjacent to the uterine decidua. On Day 10, relaxin immunoreactivity was localized in GTC-1s, secondary giant trophoblast cells (GTC-2s) adjacent to the ectoplacental cone, and endometrial granulocytes in the wall of sheathed arteries. On Day 12, relaxin immunoreactivity was observed primarily in GTC-2s interspersed among cells of the placental trophospongium but not in cells of the placental labyrinth. The intensity of staining and number of relaxin immunoreactive GTCs increased between Days 12 and 14 but was decreased by Day 15 PM. Relaxin was not localized in uterine glands or corpora lutea. These observations suggest that the placenta is the tissue source of relaxin in pregnant hamsters.  相似文献   

4.
Relaxin was localized in corpora lutea of pregnant mouse ovaries by using the unlabeled antibody peroxidase-antiperoxidase technique and a highly specific rabbit antirat relaxin serum. Relaxin immunostaining was first observed in luteal cells located at the periphery of corpora lutea on Day 10 of gestation. The number of relaxin immunostained cells and the intensity of the stain gradually increased to reach a maximum between Days 16 and 18 of gestation. While a few luteal cells were specifically stained for relaxin on Day 1 postpartum, no luteal cells were stained on Day 2 postpartum. Ultrastructural studies of luteal cells from pregnant mouse ovaries revealed the presence of a distinct electron-dense, membrane-bound granule population, which was first observed on Day 12 of gestation. The granules increased in number to reach a maximum between Days 16 and 18 of gestation, and were absent by Day 2 postpartum. The appearance and disappearance of this granule population closely paralleled the relaxin immunostaining in the luteal cells. We suggest that the granules may be the subcellular sites of relaxin storage in the pregnant mouse ovary.  相似文献   

5.
Secretion of relaxin from cultured luteal cells derived from pregnant sows was detected by a reverse hemolytic plaque assay. In this method, luteal cells are cultured in monolayers together with protein-A-conjugated ovine red blood cells. In the presence of porcine relaxin anti-serum and complement, relaxin-releasing cells become surrounded by an area of hemolysis--a plaque--which can be microscopically visualized. After fixation, these same luteal cells in monolayers were stained for the presence of 3 beta-hydroxysteroid dehydrogenase, an enzyme marker for steroidogenic cells. Cells could then be classified by their ability to form plaques (relaxin-releasing cells) and/or steroidogenic capability (positive staining). Dual-secretors (large luteal cells that were steroidogenic and released relaxin) could be identified in dispersed luteal cells derived from pigs at all stages of pregnancy examined (Day 22-112 of gestation, n = 9; term is Day 114 +/- 2 days). In addition, luteal cells were detected that were either steroidogenic only or released relaxin, and finally, cells that appeared to possess neither endocrine capability. Frequency analysis of functional subtypes indicated approximately equal representation of each in the first half of pregnancy, but an apparent fall in relaxin-releasing cells in the preparturient period. It is suggested that dual-secretors may represent one mechanism that allows the corpus luteum to express multiple endocrine function during pregnancy without the requirement for increased cell numbers.  相似文献   

6.
Electron-microscope immunocytochemistry was used to determine the subcellular distribution and presence of immunoreactive relaxin throughout pregnancy and early lactation in the corpus luteum of a marsupial, the tammar wallaby. Membrane-bound, electron-dense granules were a prominent feature of the luteal cell cytoplasm. The highest numbers of granules were observed between days 20 and 24 of the 26-day gestation, with a rapid clearance immediately after birth. Relaxin immunogold particles were present only in small, electron-dense granules (200–350 nm in diameter), with no particles observed in larger granules (>400 nm diameter), nuclei or mitochondria. Relaxin immunoreactivity was low throughout early and mid pregnancy but increased markedly between days 21 and 22 and remained high over the last 4 days of pregnancy. The number of granules containing relaxin immunogold particles and the density of immunostaining were both reduced on the day of expected births (day 26). Our data demonstrate that electron-dense granules in the luteal cell cytoplasm of a pregnant marsupial contain relaxin. The peptide is produced in greatest amounts at the end of pregnancy, consistent with a role in parturition. Received: 3 March 1997 / Accepted: 26 May 1997  相似文献   

7.
The release of relaxin from cultured porcine luteal cells derived from pregnant sows was detected by a reverse hemolytic plaque assay. In this assay, luteal cells are cocultured in monolayers with protein-A-coupled ovine erythrocytes. In the presence of porcine relaxin antiserum and complement, a zone of hemolysis--a plaque--develops around relaxin-releasing luteal cells. Treatment with prostaglandin E2 (10(-8) and 10(-6) M) significantly accelerated the rate of plaque formation; in contrast, human chorionic gonadotropin (10-1,000 IU/ml) inhibited the rate of plaque formation. Oxytocin (10(-8) to 10(-4) M) had no detectable effect on relaxin release. However, none of these treatments or long-term preexposure to prostaglandin F2 alpha increased the total proportion of large luteal cells that released relaxin, which remained at about 50%. These results are consistent with the idea that prostaglandins of uterine and/or luteal origin and pituitary luteinizing hormone may contribute, alone or perhaps in combination, to the overall regulation of ovarian relaxin release during pregnancy in the sow. In addition, the results indicate that the effects of prostaglandins are restricted to a subpopulation of large luteal cells that release detectable amounts of relaxin in culture.  相似文献   

8.
These studies were designed to determine the tissue source of ovine relaxin and to determine the feasibility of using the pregnant ewe for study of relaxin production and secretion. On Day 4 of gestation, ewes were laparotomized, the nonpregnant uterine horn was ligated, and the ovary not containing the corpus luteum was removed. During a second surgery at Day 45 (n = 8) or 140 (n = 9) of gestation, 10-ml blood samples were drawn from a uterine artery, the ovarian vein, and veins draining the pregnant and nonpregnant uterine horns. Endometrial, placental, and luteal tissues were obtained for immunocytochemistry and extraction. Relaxin was detected by a heterologous porcine radioimmunoassay (RIA) in 3 of 54 serum samples (701.3 +/- 25.4 pg/ml, mean +/- SEM). Relaxin was not detected in crude tissue extracts, but low quantities were detected by RIA following Sephadex G-50 column chromatography of tissue extracts. Total relaxin activity for all tissues was equivalent to 0.57 +/- 0.13 ng of porcine relaxin/g tissue (w.w.). Relaxin was not detected immunocytochemically by light or electron microscopy. These data indicate that low quantities of relaxin are present in tissues and sera of pregnant ewes.  相似文献   

9.
Porcine relaxin has been sought by localization in the corpus luteum of sows on Days 3, 7, 9, 11, 12, 15, 18, 19, and 21 of the estrous cycle, using the avidin-biotin immunoperoxidase method and an antiserum to purified porcine relaxin. Simultaneous localization of relaxin in corpora lutea from sows on Days 108 and 113 of pregnancy was used to compare the intensity of immunostaining with that of corpora lutea of cyclic animals. However, the antiserum dilution necessary for optimal localization differed considerably in these two states (1:10,000 in pregnancy and 1:750 in the cycle), suggesting that lower levels of antigen are present in the luteal cells of the cycle. Relaxin immunostaining was undetectable on Day 3 of the cycle but became evident by Days 7 and 9. At Day 11 staining intensity increased and persisted through Day 15. On Day 18 some stain was still evident, but by Days 19, 20, and 21 there was complete absence of immunostain. Relaxin immunostaining appeared to be located throughout the cytoplasm of the luteal cell, as clear areas in the nuclear region were often observed. The results suggest that relaxin is produced in low amounts by the luteal cells of the cyclic sow and that the levels fluctuate with stage of the cycle. Lack of evidence from radioimmunoassay for a surge of relaxin secretion into the systemic circulation prior to luteolysis in the pig estrous cycle suggests that the relaxin localized in the luteal cells of the cycle may have an intraovarian function.  相似文献   

10.
Relaxin is one of the hormones present during pregnancy and it is synthesized primarily by corpora lutea (CL). Other reproductive tissues including CL of the menstrual cycle may also synthesize this hormone. Very little is known, however, about the cellular and subcellular distribution of relaxin in human CL and dependence of luteal relaxin on the reproductive state. The light and electron microscope immunocytochemical studies described here were undertaken to obtain this information using antisera to porcine and human relaxin. Immunostaining was found in large luteal cells (17-30 microns) but not in small luteal cells (7-16 microns) or in nonluteal cells in any of the reproductive states or in human hepatocytes. Luteal immunostaining was low in early luteal phase; it increased progressively, reaching the highest level in late luteal phase, and then decreased greatly in corpora albicantia. Term pregnancy CL contained similar immunostaining as early luteal phase CL. Mid luteal phase CL contained more immunostained cells than late luteal phase CL, but the late luteal phase CL contained a greater amount of immunostaining per cell than mid luteal phase CL. The immunogold particles due to relaxin were primarily present in secretory granules and to a small extent in rough endoplasmic reticulum. Quantitation revealed that secretory granules contained a much higher number of gold particles than did rough endoplasmic reticulum. These two organelles from late luteal phase CL contained greater numbers of gold particles than those from mid luteal phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Conceptus estrogen clearly plays a major role in luteal maintenance in the pig; however, other conceptus-derived substances or conceptus-induced uterine secretory products appear to have a local luteotrophic/anti-luteolytic effect on the corpora lutea (CL) and likely may play a key role in maternal recognition of pregnancy in the pig. The objective of these studies was to compare PGF2α-induced luteolysis in estrogen-treated ‘pseudopregnant’ gilts versus pregnant gilts during the period of maternal recognition of pregnancy. In Experiment 1, doses of PGF2α ranging from 1 to 100 μg were administered via intraluteal silastic implants to pseudopregnant gilts to determine the dose necessary to cause functional (progesterone) and structural (weight) luteal regression similar to that observed during the natural estrous cycle. Luteal sensitivity to this minimally effective luteolytic dose of PGF2α was then determined for both pseudopregnant and pregnant gilts in Experiment 2. Experiment 3 investigated whether Day 13 porcine conceptus tissue could directly prevent PGF2α-induced luteolysis at the level of the CL. The minimally effective luteolytic dose of PGF2α (100 μg) determined in the pseudopregnant pig caused a similar decline in progesterone concentration and weight of CL in pregnant gilts, suggesting that the susceptibility of CL of pregnant and pseudopregnant pigs to PGF2α is similar. However, luteal weight was greater (P<0.05) for the pregnant gilts than for pseudopregnant gilts, suggesting that estrogen treatment alone cannot mimic the conceptus effects on CL growth and development. Experiment 3 demonstrated that lyophilized Day 13 conceptus tissue implanted directly into individual CL could partially inhibit PGF2α-induced luteolysis, providing for the first time direct evidence that porcine conceptuses as early as Day 13 contain factors which can directly (i. e. at the level of the CL) prevent luteal regression.  相似文献   

12.
Many nondomestic felids are highly endangered, and captive breeding programs have become essential components of holistic conservation efforts for these species. The ability to diagnose pregnancy early in gestation is fundamental to developing effective breeding programs. The purpose of this study was to develop a radioimmunoassay (RIA) for the detection of urinary relaxin in felids and assess its applicability for early, noninvasive pregnancy diagnosis in domestic cats (Felis silvestris catus) and leopards (Panthera pardus). Urine was collected from pregnant and nonpregnant domestic cats and leopards at mating, and then weekly thereafter for the duration of gestation. Paired serum samples were also collected from the domestic cats. A RIA for relaxin that uses an antiserum against synthetic canine relaxin was validated for felid urine and shown to detect relaxin immunoreactivity in pregnant cat urine subjected to acid-acetone extraction. In the cat, urinary relaxin was first detected between Days 21 and 28 of gestation; levels peaked at 42-49 days, and the concentrations then declined over 2 wk prior to parturition. The urinary relaxin profiles of the cat mirrored those in serum. In the leopard, urinary relaxin was first detected at Day 25-28 of gestation; levels peaked at Day 60-64 and declined in the last 3-4 wk of pregnancy. These results indicate that measurement of urinary relaxin in the cat and leopard provides a reliable method for pregnancy determination from as early as 3-4 wk of gestation. This method of pregnancy diagnosis and monitoring may prove useful in the breeding management of domestic cats and other felid and canid species, and provides a foundation for future studies on pregnancy in captive exotic carnivores.  相似文献   

13.
Uteri and ovaries from cycling, pregnant, and lactating guinea pigs were studied for immunolocalization of relaxin with the light microscope. Endometrial gland cells (EGC) from the same group of animals were examined in the electron microscope for the presence of secretory granules. Those EGC that exhibited high numbers of granules were stained either for relaxin with the protein A colloidal gold method or for carbohydrate with the thiocarbohydrazide technique. Relaxin was found in EGC from middle and late pregnant animals but was not detected in ovaries or uteri from cycling animals. While cytoplasmic granules were noted in most EGC from cycling animals examined, the number of granules was greatest in uteri from estrus and proestrus animals. Granules in EGC from estrus animals contained a carbohydrate-rich material but did not contain relaxin. Endometrial gland cells from animals in early to middle stages of pregnancy (days 15 and 30) contained limited numbers of granules, almost all of which contained carbohydrate. At day 45 of pregnancy, EGC containing many granules were noted. The majority of granules contained relaxin; however, a significant number of EGC contained carbohydrate-rich granules. Infrequently, EGC were noted that contained two populations of granules, and these two populations were assumed to be made up of relaxin-containing and carbohydrate-rich granules. EGC from animals on day 60 of pregnancy typically contained granules, and the majority of these contained relaxin. Carbohydrate-rich granules were observed in EGC of the day 60 animals but were smaller in diameter and were noted in much lower numbers than the relaxin-containing granules. Endometrial gland cells from lactating animals infrequently contained granules. These studies are consistent with the hypothesis that the uterus is the primary source of relaxin in the guinea pig and that relaxin plays an important role in pregnancy and parturition of this species. The observations implicate endometrial glands and their products in the physiology of the cycling animal as well as the pregnant and parturient animal.  相似文献   

14.
Light-microscope immunocytochemistry using the peroxidase-antiperoxidase technique and a polyclonal rabbit antiserum raised against purified porcine relaxin showed that cytoplasmic immunostaining for relaxin could be visualized in the epithelial cells of the seminal vesicle. No relaxin immunoreactivity was seen in the testis, epididymis, ductus deferens, prostate or bulbo-urethral gland. A ten times higher concentration of porcine relaxin antiserum was necessary to achieve immunostaining in the seminal vesicle comparable to that in the corpora lutea of pregnant sows. Ultrastructural examination showed that the epithelial cells of the boar seminal vesicle resembled typical protein-secreting cells with prominent rough endoplasmic reticulum and well-developed Golgi apparatus. The most striking feature of these cells was the accumulation of granules with a limiting membrane, which ranged from 200 to 600 nm in diameter and contained flocculent material of moderate electron density. Electron-microscope immunocytochemistry using the protein A-gold technique and relaxin antiserum demonstrated that the granules were the only intracellular organelles that showed immunoreactivity for relaxin. These results indicate that a relaxin-like substance is present in boar seminal vesicles and that the subcellular site of its localization is the granules, suggesting that the seminal vesicle produces and stores a relaxin-like substance, but that it is present at much lower concentrations than in the corpora lutea of pregnant sows.  相似文献   

15.
Mice homozygous for a mutant allele (an/an) causing a lifelong macrocytic anemia (Hertwig's anemia) also demonstrate an inability to deliver their offspring, despite normal ovulation, conception, implantation, and fetal development. We investigated the roles of estrogen and relaxin in the etiology of the reproductive defect in the Hertwig's anemia mice. Immunoreactive relaxin levels were undetectable in the nonpregnant controls, whereas levels in both timed-pregnant controls and timed-pregnant affected mice were significantly higher than in nonpregnant controls, but not significantly different from each other. Mean interpubic ligament length in the pregnant Hertwig's anemia mice was significantly greater than that in nonpregnant controls, but significantly less than that in the pregnant controls on Day 18 of pregnancy. Porcine relaxin was administered to nonpregnant affected and unaffected littermates and to nonpregnant controls. Whereas controls showed a significant response to porcine relaxin, neither the Hertwig's anemia mice nor their unaffected littermates responded to the porcine relaxin. Additional study was performed to determine estradiol effects in the affected and control animals utilizing detailed computerized morphometric analysis of uterine horns and cervices from immature, estradiol-injected controls and Hertwig's anemia mice. Results demonstrated a statistically significant trophic effect of estradiol upon uterine horn and cervical enlargement, as assessed by weight and volume, in controls. Only a slight, non-significant effect was seen in Hertwig's anemia mice. Additional histological effects of estradiol, including endometrial enfolding observed in controls, were not present in Hertwig's anemia mice. Lack of response to both estrogen and relaxin is responsible for the parturitional defect in Hertwig's anemia mice.  相似文献   

16.
17.
Peripheral concentrations of immunoreactive relaxin are undetectable in primates during the nonfertile menstrual cycle, but become measurable during the interval when chorionic gonadotropin (CG) rises in early pregnancy. The objectives of the current study were to determine if exogenous CG, administered in a dosage regimen which invoked patterns and concentrations resembling those of early pregnancy, would induce relaxin secretion in nonpregnant rhesus monkeys, and whether the induction was dependent on the age of the corpus luteum (CL) at the onset of treatment. Female rhesus monkeys received twice-daily i.m. injections of increasing doses of human CG (hCG) for 10 days beginning in the early (n = 4), mid (n = 6) or late (n = 4) luteal phase of the menstrual cycle [5.3 +/- 0.3, 8.3 +/- 0.5, and 12.0 +/- 0.4 days after the midcycle luteinizing hormone (LH) surge, respectively; means +/- SEM]. Whereas immunoreactive relaxin was nondetectable in the luteal phase of posttreatment cycles, detectable levels of relaxin were observed in 2 of 4, 5 of 6, and 3 of 4 monkeys during hCG treatment in the early, mid and late luteal phase, respectively. Although CG treatment rapidly enhance progesterone levels, the appearance of relaxin was deferred; relaxin was first detectable 9.0 +/- 1.0 and 4.7 +/- 1.9 days after the onset of CG treatment at early and late luteal phases. Patterns of relaxin concentrations differed among groups (P less than 0.05, ANOVA; split plot design) and relaxin levels were lowest (P less than 0.01) in monkeys treated during the early luteal phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We administered estradiol and progesterone to spayed guinea pigs, with resultant accumulation of secretory granules in endometrial gland cells. By initially employing protein A-colloidal gold immunolocalization of relaxin, followed by cytochemical staining of carbohydrate with the thiocarbohydrazide-silver proteinate method on the same section, we showed clearly that the secretory granules were composed of a central core containing relaxin and a cortex of carbohydrate-rich material. Use of normal rabbit serum rather than relaxin antiserum, and omission of periodic acid, demonstrated the specificity of the technique.  相似文献   

19.
A previous study indicated rabbit endometrial relaxin synthesis is stimulated by blastocyst (Lee VH, Fields PA, Biol Reprod 1990; 40:737-745). To evaluate this hypothesis, unilateral oviduct ligations were placed (A) at the oviduct isthmus on Day 1 post-copulation and (B), in a separate group of rabbits, at the infundibulum before copulation. Blastocysts migrate into and implant in the uterine horn contralateral to the ligated oviduct only (conceptus-bearing uterus). The uterine horn ipsilateral to the ligated oviduct will be referred to as the non-conceptus-bearing uterus. Uteri and ovaries were removed on Days 4-28 of pregnancy and were evaluated for relaxin using guinea pig anti-porcine relaxin serum and avidin-biotin light microscopy immunohistochemistry. Results were identical for both models. Blastocysts first attach to the antimesometrial uterine surface by Day 7 post-copulation. Implantation on the mesometrial surface occurs on Days 8-11. Relaxin was observed in antimesometrial endometrial glands of both conceptus and non-conceptus-bearing uteri on Days 4-7 of pregnancy. Beyond Day 7, relaxin was observed in antimesometrial and mesometrial endometrial glandular and luminal epithelial cells at implantation sites of the conceptus-bearing uterus only. Relaxin was not found between implantation sites. Endometrial epithelial cells of the non-conceptus-bearing uterus were regressing by Day 9. These data indicate a conceptus-mediated maintenance of endometrial epithelial cells. Furthermore, the data suggest a paracrine maintenance of epithelial cell integrity and relaxin synthesis since these parameters are preserved only in the conceptus-bearing uterus. Cell-cell communication between conceptus and endometrium appears to be specific since endometrium between implantation sites does not contain relaxin. Uterine tissue from pseudopregnant rabbits (Days 1-16) was evaluated. Relaxin was observed in the antimesometrial glands on Day 7 only. Like the endometrium in the ligation model, endometrial epithelial cells of the pseudopregnant rabbit uterus were regressing by Day 9. These results indicate that pregnancy is not required for, but may enhance, relaxin synthesis. In addition, endometrial epithelial cells regress in the absence of pregnancy. Regression of endometrial epithelial cells on Day 9 suggests that maternal recognition of pregnancy occurs during the preimplantation period (Days 4-8).  相似文献   

20.
A rabbit antiserum directed against purified human placental aromatase was used for immunohistochemical localization of the enzyme in rat ovaries. Immunostaining was conducted on tissue from animals at various ages and in different reproductive states: immature; immature, eCG-treated; immature pseudopregnant; adult cycling; and adult pregnant. Various labeling protocols were employed (e.g. horseradish peroxidase-conjugated secondary antibody, peroxidase-antiperoxidase, and avidin-biotin-peroxidase on fresh frozen and Bouin's fixed paraffin-embedded sections), but the avidin-biotin-peroxidase method on paraffin sections proved to be superior to the others. In immature rats, most of the immunostaining, which was quite weak, was limited to the stroma. After stimulation with eCG, some of the granulosa cells of antral follicles exhibited immunostaining; in pseudopregnant rats, most staining occurred in the luteal cells. In mature animals, the corpora lutea of pregnant and cycling rats demonstrated the greatest degree of immunostaining. No significant immunoreactivity was detected in pre-antral follicles, but in early antral follicles and preovulatory follicles, both theca and granulosa cells exhibited immunostaining. Aromatase enzymatic activity was also determined on ovarian microsomal fractions of eCG-treated immature animals, pregnant animals at term, and cycling animals. Furthermore, enzyme activity and estradiol concentrations were examined after ovaries from proestrous rats were dissected into follicular, luteal, and residual components. Activity was found in all regions and correlated with immunostaining and estrogen production. These results argue against a model in which all the immunoreactive/enzymatically active protein is localized in granulosa cells of Graafian follicles and suggest that corpora lutea may be involved in estrogen synthesis during the rat estrous cycle as well as during pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号