首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Internalization of activated signaling receptors by endocytosis is one way cells downregulate extracellular signals. Like many signaling receptors, the yeast alpha-factor pheromone receptor is downregulated by hyperphosphorylation, ubiquitination, and subsequent internalization and degradation in the lysosome-like vacuole. In a screen to detect proteins involved in ubiquitin-dependent receptor internalization, we identified the sphingoid base-regulated serine-threonine kinase Ypk1. Ypk1 is a homologue of the mammalian serum- and glucocorticoid-induced kinase, SGK, which can substitute for Ypk1 function in yeast. The kinase activity of Ypk1 is required for receptor endocytosis because mutations in two residues important for its catalytic activity cause a severe defect in alpha-factor internalization. Ypk1 is required for both receptor-mediated and fluid-phase endocytosis, and is not necessary for receptor phosphorylation or ubiquitination. Ypk1 itself is phosphorylated by Pkh kinases, homologues of mammalian PDK1. The threonine in Ypk1 that is phosphorylated by Pkh1 is required for efficient endocytosis, and pkh mutant cells are defective in alpha-factor internalization and fluid-phase endocytosis. These observations demonstrate that Ypk1 acts downstream of the Pkh kinases to control endocytosis by phosphorylating components of the endocytic machinery.  相似文献   

2.
G protein–coupled (GPC) receptors are phosphorylated in response to ligand binding, a modification that promotes receptor desensitization or downregulation. The α-factor pheromone receptor (Ste2p) of Saccharomyces cerevisiae is a GPC receptor that is hyperphosphorylated and ubiquitinated upon binding α-factor. Ubiquitination triggers Ste2p internalization into the endocytic pathway. Here we demonstrate that phosphorylation of Ste2p promotes downregulation by positively regulating ubiquitination and internalization. Serines and a lysine are essential elements of the Ste2p SINNDAKSS internalization signal that can mediate both constitutive and ligand-stimulated endocytosis. The SINNDAKSS serines are required for receptor phosphorylation which, in turn, facilitates ubiquitination of the neighboring lysine. Constitutive phosphorylation is required to promote constitutive internalization, and is also a prerequisite for ligand-induced phosphorylation at or near the SINNDAKSS sequence. Mutants defective in yeast casein kinase I homologues are unable to internalize α-factor, and do not phosphorylate or ubiquitinate the receptor, indicating that these kinases play a direct or indirect role in phosphorylating the receptor. Finally, we provide evidence that the primary function of phosphorylation controlled by the SINNDAKSS sequence is to trigger receptor internalization, demonstrating that phosphorylation-dependent endocytosis is an important mechanism for the downregulation of GPC receptor activity.  相似文献   

3.
When Saccharomyces cerevisiae a cells bind alpha-factor pheromone, the ligand is internalized and its binding sites are lost from the cell surface in a time-, energy-, and temperature-dependent manner. This report presents direct evidence for alpha-factor-induced internalization of cell surface receptors. First, membrane fractionation on Renografin density gradients indicated that the alpha-factor receptors were predominantly found in the plasma membrane peak before alpha-factor treatment and then appeared in membranes of lesser buoyant density after alpha-factor exposure. Second, receptors were susceptible to cleavage by extracellular proteases before alpha-factor treatment and then became resistant to proteolysis after exposure to pheromone, consistent with the transit of receptors from the cell surface to an internal compartment. The median transit time in both assays was approximately 8 min. The ultimate target of the internalized receptors was identified as the vacuole, since the membranes containing internalized receptors cofractionated with vacuolar membranes, since the turnover of receptors was stimulated by alpha-factor exposure, and since receptor degradation was blocked in a pep4 mutant that is deficient for vacuolar proteases. The carboxy-terminal domain of the receptor that is required for ligand internalization was also found to be essential for endocytosis of the receptor. A receptor mutant, ste2-L236H, which is defective for pheromone response but capable of ligand internalization, was found to be proficient for receptor endocytosis. Hence, separate structural features of the receptor appear to specify its signal transduction and internalization activities.  相似文献   

4.
The alpha-factor receptor is rapidly hyperphosphorylated on Thr and Ser residues in its hydrophilic C-terminal domain after cells are exposed to pheromone. Mutant receptors in which this domain is altered or removed are biologically active and bind alpha-factor with nearly normal affinity. However, cells expressing the mutant receptors are hypersensitive to pheromone action and appear to be defective in recovery from alpha-factor-induced growth arrest. Mutant receptors with partial C-terminal truncations undergo ligand-induced endocytosis, suggesting that down-regulation of receptor number is not the sole process for adaptation at the receptor level. A mutant receptor lacking the entire C-terminal domain (134 residues) does not display ligand-induced endocytosis. Genetic experiments indicate that the contribution of SST2 function to adaptation does not require the C-terminal domain of the receptor.  相似文献   

5.
Endocytic internalization of G protein-coupled receptors (GPCRs) plays a critical role in down-regulation of GPCR signaling. The yeast mating pheromone receptor Ste2p has been used as a model to investigate mechanisms of signal transduction, modification, and endocytic internalization of GPCRs. We previously used a fluorescently labeled mating pheromone derivative to reveal unappreciated molecular and spatiotemporal features of GPCR endocytosis in budding yeast. Here, we identify recruitment of Ste2p to preexisting clathrin-coated pits (CCPs) as a key step regulated by receptor phosphorylation and subsequent ubiquitination upon ligand binding. The yeast casein kinase I homologue Yck2p directly phosphorylates six serine residues located in the C-terminal tail of Ste2p, and mutation of these serine residues to alanine significantly decreased recruitment of Ste2p to CCPs. We also found that the clathrin adaptors Ent1p, Ent2p, and Ede1p work cooperatively to recruit ubiquitinated Ste2p to CCPs. In addition, ubiquitination has a role in ligand-independent constitutive recruitment of Ste2p to CCPs, although this process is much slower than ligand-induced recruitment. These results suggest that ubiquitination of Ste2p is indispensable for recruiting Ste2p to CCPs in both ligand-dependent and ligand-independent endocytosis.  相似文献   

6.
It has been reported that the sequence Tyr20-X-Arg-Phe23 present within the cytoplasmic tail of the transferrin receptor may represent a tyrosine internalization signal (Collawn, J.F., Stangel, M., Kuhn, L.A., Esekogwu, V., Jing, S., Trowbridge, I.S., and Tainer, J. A. (1990) Cell 63, 1061-1072). However, as Tyr20 is not conserved between species (Alvarez, E., Gironès, N., and Davis, R. J. (1990) Biochem. J. 267, 31-35), the functional role of the putative tyrosine internalization signal is not clear. To address this question, we constructed a series of 32 deletions and point mutations within the cytoplasmic tail of the human transferrin receptor. The effect of these mutations on the apparent first order rate constant for receptor endocytosis was examined. It was found that the region of the cytoplasmic tail that is proximal to the transmembrane domain (residues 28-58) is dispensable for rapid endocytosis. In contrast, the distal region of the cytoplasmic tail (residues 1-27) was found to be both necessary and sufficient for the rapid internalization of the transferrin receptor. The region identified includes Tyr20-X-Arg-Phe23, but is significantly larger than this tetrapeptide. It is therefore likely that structural information in addition to the proposed tyrosine internalization signal is required for endocytosis. To test this hypothesis, we investigated whether a heterologous tyrosine internalization signal (from the low density lipoprotein receptor) could function to cause the rapid endocytosis of the transferrin receptor. It was observed that this heterologous tyrosine internalization signal did not allow rapid endocytosis. We conclude that the putative tyrosine internalization signal (Tyr20-Thr-Arg-Phe23) is not sufficient to determine rapid endocytosis of the transferrin receptor. The data reported here indicate that the transferrin receptor internalization signal is formed by a larger cytoplasmic tail structure located at the amino terminus of the receptor.  相似文献   

7.
《The Journal of cell biology》1993,123(6):1707-1716
The role of clathrin in endocytosis of the yeast phermone receptors was examined using strains expressing a temperature-sensitive clathrin heavy chain. The yeast phermone receptors belong to the family of seven transmembrane segment, G-protein-coupled receptors. A rapid and reversible defect in uptake of radiolabeled alpha-factor pheromone occurred when the cells were transferred to the nonpermissive temperature. Constitutive, pheromone-independent internalization of newly synthesized a-factor phermone receptor was also rapidly inhibited in mutant strains at the nonpermissive temperature. In both cases residual endocytosis, 30-50% of wild-type levels, was detected in the absence of functional clathrin heavy chain. Once internalized, the a- factor receptor was delivered to the vacuole at comparable rates in chc1-ts and wild-type cells at the nonpermissive temperature. Clathrin heavy chain was also required for maximal uptake of a mutant a-factor receptor which is dependent on pheromone for internalization. In the presence of a-factor, the internalization rate of the mutant receptor in chc1-ts cells at the nonpermissive temperature was 2.5 times slower than the rate observed for endocytosis of the mutant receptor in wild- type cells. These experiments provide in vivo evidence that clathrin plays an important role in the endocytosis of the seven trans-membrane segment pheromone receptors in yeast.  相似文献   

8.
Mouse B82 cells that support high affinity saturable endocytosis of epidermal growth factor receptors (EGFR) exhibited only low rates of nonsaturable internalization of insulin receptors (InsR). To investigate the defect in endocytosis of InsR in B82 cells, we examined the role of sequence motifs and tyrosine kinase, the two receptor components shown to be required for efficient saturable endocytosis of InsR in Rat 1 cells. Placement of residues encoded by exon 16 of the InsR onto an EGFR truncated to residue 958 restored EGF-induced internalization of this mutant receptor indicating that the sequence codes in exon 16 are recognized by B82 cells. To determine whether the kinase function could be provided in trans, a B82 cell expressing both receptors was established. EGF-activated EGFR kinase was not able to restore insulin-dependent rapid endocytosis to InsR. However, fusion of untransfected Rat1 cells with InsR-expressing B82 cells enabled rapid endocytosis of InsR, indicating that the internalization defect can be complemented. These results indicate that, although internalization codes can function in the context of other receptors, activation of tyrosine kinase receptors requires an additional specific component.  相似文献   

9.
Using detailed functional studies on 24 human transferrin receptor mutants, we identified YXRF as the internalization sequence. Provided that at least 7 residues separate this tetrapeptide from the transmembrane region, changing the tetrapeptide position within the TR cytoplasmic domain does not reduce internalization activity. Thus, any conformational determinant for internalization must be localized to the YXRF sequence. Twenty-eight tetrapeptide analogs of YXRF, found by an unbiased search of all known three-dimensional protein structures, significantly favored tight turns similar to a type I turn. Of the ten tetrapeptides most closely related to YXRF, eight were surface exposed and had tight-turn conformations, as were four of five tetrapeptides with sequences related to the low density lipoprotein receptor internalization motif, NPXY. The internalization sequences of both receptors contain aromatic residues with intervening hydrogen-bonding residues. Thus, two distinct internalization sequences favor a common structural chemistry and implicate an exposed tight turn as the recognition motif for high efficiency endocytosis.  相似文献   

10.
Wang Q  Zhu F  Wang Z 《Experimental cell research》2007,313(15):3349-3363
Most studies regarding the role of epidermal growth factor (EGF) receptor (EGFR) C-terminal domain in EGFR internalization are done in the context of EGFR kinase activation. We recently showed that EGF-induced EGFR internalization is directly controlled by receptor dimerization, rather than kinase activation. Here we studied the role of EGFR C-terminus in EGF-induced EGFR internalization with or without EGFR kinase activation. We showed that graduate truncation of EGFR from C-terminus to 1044 did not affect EGF-induced EGFR endocytosis with or without kinase activation. However, truncation to 991 or further completely inhibited EGFR endocytosis. Graduate truncation within 991-1044 progressively lower EGF-induced EGFR endocytosis with most significant effects observed for residues 1005-1017. The endocytosis patterns of mutant EGFRs are independent of EGFR kinase activation. The residues 1005-1017 were also required for EGFR internalization triggered by non-ligand-induced receptor dimerization. This indicates that residues 1005-1017 function as an internalization motif, rather than a dimerization motif, to mediate EGFR internalization. Furthermore, we showed that the di-leucine motif 1010LL1011 within this region is essential in mediating EGF-induced rapid EGFR internalization independent of kinase activation. We conclude that EGFR C-terminal sequences 1005-1017 and the 1010LL1011 motif are essential for EGF-induced EGFR endoytosis independent of EGFR kinase activation and autophosphorylation.  相似文献   

11.
Leptin receptors are constitutively endocytosed in a ligand-independent manner. To study their endocytosis, leptin receptors OB-Ra and OB-Rb were expressed in HeLa cells. Both receptor isoforms were ubiquitylated, internalized by clathrin-mediated endocytosis and transported to Hrs-positive endosomes after their internalization. Proteasome inhibitors inhibited OB-Ra but not OB-Rb internalization from the cell surface. OB-Ra ubiquitylation occurred on lysine residues K877 and K889 in the cytoplasmic tail, the mutation of which abolished OB-Ra internalization. Fusion of an ubiquitin molecule at the C-terminus of an OB-Ra construct defective both in ubiquitylation and endocytosis restored clathrin-dependent endocytosis of the receptor. The internalization of this constitutively mono-ubiquitylated construct was no longer sensitive to proteasome inhibitors, which inhibited OB-Ra endocytosis by blocking its ubiquitylation. Fusion of an ubiquitin molecule to a transferrin receptor deleted from its own endocytosis motif restored clathrin-mediated endocytosis. We propose that mono-ubiquitin conjugates act as internalization motifs for clathrin-dependent endocytosis of leptin receptor OB-Ra.  相似文献   

12.
The signal for the rapid internalization of the cation-independent mannose 6-phosphate/insulin-like growth factor-II receptor has been previously localized to the inner half of the 163-amino acid cytoplasmic tail, including tyrosine 24 and tyrosine 26 (Lobel, P., Fujimoto, K., Ye, R. D., Griffiths, G., and Kornfeld, S. (1989) Cell 57, 787-796). To define this signal more precisely, we generated a series of truncation and substitution mutants and analyzed them for their ability to mediate the endocytosis of extracellular lysosomal enzymes. Mutant receptors containing cytoplasmic domains of 29 or more amino acids functioned normally in endocytosis whereas a mutant receptor with a 28-amino acid cytoplasmic domain was internalized extremely slowly. Alanine scanning of the region between amino acids 19 and 30 identified tyrosine 26 and valine 29 as the most important residues for rapid receptor internalization. Tyrosine 24 and lysine 28 also contributed to the signal while the other amino acids were not critical. The tyrosine residues could be substituted with phenylalanines with no loss of activity, indicating the requirement for an aromatic residue in these positions rather than tyrosine specifically. Conservative substitutions of arginine or histidine for lysine 28 also preserved the internalization signal. These results indicate that the sequence Tyr-Lys-Tyr-Ser-Lys-Val serves as the internalization signal for the mannose 6-phosphate/insulin-like growth factor-II receptor. The crucial elements of this sequence are present in the cytoplasmic tails of a number of other membrane receptors and proteins known to undergo rapid internalization.  相似文献   

13.
Fc receptors on leukocytes mediate internalization of antibody-containing complexes. Soluble immune complexes are taken up by endocytosis, while large antibody-opsonized particles are internalized by phagocytosis. We investigated the role of ubiquitylation in internalization of the human FcgammaRIIA receptor by endocytosis and phagocytosis. A fusion of FcgammaRIIA to green fluorescent protein (GFP) was expressed in ts20 cells, which bear a temperature-sensitive mutation in the E1 ubiquitin-activating enzyme. Uptake of soluble IgG complexes mediated by FcgammaRIIA-GFP was blocked by incubation at the restrictive temperature, indicating that endocytosis requires ubiquitylation. In contrast, phagocytosis and phagosomal maturation were largely unaffected when ubiquitylation was impaired. FcgammaRIIA-GFP was ubiquitylated in response to receptor cross-linking. Elimination of the lysine residues present in the cytoplasmic domain of FcgammaRIIA impaired endocytosis, but not phagocytosis. The proteasomal inhibitor clasto-lactacystin beta-lactone strongly inhibited endocytosis, but did not affect phagocytosis. These studies demonstrate a role for ubiquitylation in the endocytosis of immune receptors, and reveal fundamental differences in the mechanisms underlying internalization of a single receptor depending on the size or multiplicity of the ligand complex.  相似文献   

14.
We identified DNM1, a novel dynamin-related gene in Saccharomyces cerevisiae. Molecular and genetic mapping showed that DNM1 is the most proximal gene to the right of centromere 12, and is predicted to encode a protein of 85 kD, designated Dnm1p. The protein exhibits 41% overall identity with full-length dynamin I and 55% identity with the most highly conserved 400-amino acid GTPase region. Our findings show that like mammalian dynamin, Dnm1p participates in endocytosis; however, it is unlikely to be a cognate homologue. Cells with a disruption in the DNM1 gene showed mating response defects consistent with a delay in receptor-mediated endocytosis. The half-life of the Ste3p pheromone receptor was increased two- to threefold in the dnm1 mutant, demonstrating that Dnm1p participates in the constitutive turnover of the receptor. To define the step in the endocytic pathway at which Dnm1p acts, we analyzed mutant strains at both early and late steps of the process. Initial internalization of epitope-tagged pheromone receptor or of labeled pheromone proceeded with wild-type kinetics. However, delivery of the internalized receptor to the vacuole was greatly impeded during ligand-induced endocytosis. These data suggest that during receptor-mediated endocytosis, Dnm1p acts after internalization, but before fusion with the vacuole. The dnm1 mutant was not defective for sorting of vacuolar proteins, indicating that Dnm1p is not required for transport from the late endosome to the vacuole. Therefore, we suggest that Dnm1p participates at a novel step before fusion with the late endosome.  相似文献   

15.
In addition to its role in selective protein degradation, the conjugation of ubiquitin to proteins has also been implicated in the internalization of plasma membrane proteins, including the alpha-factor receptor Ste2p, uracil permease Fur4p, epithelial sodium channel ENaC and the growth hormone receptor (GHR). Binding of GH to its receptor induces receptor dimerization, resulting in the activation of signal transduction pathways and an increase of GHR ubiquitination. Previously, we have shown that the ubiquitin conjugation system mediates GH-induced GHR internalization. Here, we present evidence that a specific domain of the GHR regulates receptor endocytosis via the ubiquitin conjugation system. This ubiquitin-dependent endocytosis (UbE) motif consists of the amino acid sequence DSWVEFIELD and is homologous to sequences in other proteins, several of which are known to be ubiquitinated. In addition, we show that GH internalization by a truncated GHR is independent of the presence of lysine residues in the cytosolic domain of this receptor, while internalization still depends on an intact ubiquitin conjugation system. Thus, GHR internalization requires the recruitment of the ubiquitin conjugation system to the GHR UbE motif rather than the conjugation of ubiquitin to the GHR itself.  相似文献   

16.
Wild-type and mutant human transferrin receptors have been expressed in chicken embryo fibroblasts using a helper-independent retroviral vector. The internalization of mutant human transferrin receptors, in which all but four of the 61 amino acids of the cytoplasmic domain had been deleted, was greatly impaired. However, when expressed at high levels, such "tailless" mutant receptors could provide chicken embryo fibroblasts with sufficient iron from diferric human transferrin to support a normal rate of growth. As the rate of recycling of the mutant receptors was not significantly different from wild-type receptors, an estimate of relative internalization rates could be obtained from the distribution of receptors inside the cell and on the cell surface under steady-state conditions. This analysis and the results of iron uptake studies both indicate that the efficiency of internalization of tailless mutant receptors is approximately 10% that of wild-type receptors. Further studies of a series of mutant receptors with different regions of the cytoplasmic domain deleted suggested that residues within a 10-amino acid region (amino acids 19-28) of the human transferrin receptor cytoplasmic domain are required for efficient endocytosis. Insertion of this region into the cytoplasmic domain of the tailless mutant receptors restored high efficiency endocytosis. The only tyrosine residue (Tyr 20) in the cytoplasmic domain of the human transferrin receptor is found within this 10-amino acid region. A mutant receptor containing glycine instead of tyrosine at position 20 was estimated to be approximately 20% as active as the wild-type receptor. We conclude that the cytoplasmic domain of the transferrin receptor contains a specific signal sequence located within amino acid residues 19-28 that determines high efficiency endocytosis. Further, Tyr 20 is an important element of that sequence.  相似文献   

17.
Signals that can mediate ligand-induced receptor internalization and calcium regulation are present in a 48-amino acid "calcium-internalization" domain in the C' terminus of the epidermal growth factor (EGF) receptor. The basis of calcium and internalization regulation signalled by this 48-amino acid sequence was analyzed using deletion and substitution mutant receptors. Cells expressing truncated receptors containing either the NH2- or COOH-terminal portion of the 48-residue domain displayed high affinity EGF-dependent endocytosis and receptor down-regulation. These endocytosis-competent EGF receptor mutants that lacked any autophosphorylation site were unable to increase the concentration of intracellular calcium. To investigate the role of self-phosphorylation in EGF-induced calcium mobilization, phenylalanine was substituted for the single autophosphorylated tyrosine residue in this region of an internalization-competent truncated receptor. The receptor-mediated calcium response was abolished, while ligand-dependent receptor internalization was unimpaired. These results demonstrate that EGF-dependent receptor endocytosis and calcium mobilization are separate events. Tyrosine self-phosphorylation is required for increased [Ca2+]i, while structural features distinct from autophosphorylation are required for receptor internalization.  相似文献   

18.
The transferrin receptor (TR) mediates cellular iron uptake by bringing about the endocytosis of transferrin. We investigated whether the cytoplasmic domain of 65 N-terminal amino acids or phosphorylated sites within this domain constitute a structure that is required for TR endocytosis. To test this hypothesis, we modified the cytoplasmic serine residues or introduced a deletion of 36 amino acids by in vitro mutagenesis of a cDNA expression vector for human TR. Upon expression in transfected mouse Ltk- cells, both the wild-type and phosphorylation site mutant receptors mediated transferrin internalization, whereas the truncated receptor did not. These results provide evidence that the cytoplasmic domain, or part of it, is essential for internalization of the TR, but argue against a role for receptor phosphorylation in endocytosis.  相似文献   

19.
The ubiquitin conjugation system is involved in ligand-induced endocytosis of the growth hormone receptor (GHR) via a cytosolic 10-amino acid ubiquitin-dependent endocytosis motif. Herein, we demonstrate that the proteasome is also involved in growth hormone receptor down-regulation. Ligand-induced degradation was blocked in the presence of specific proteasomal inhibitors. In addition, growth hormone (GH) internalization was inhibited, whereas the transferrin receptor cycle remained unaffected. A truncated GHR entered the cells independent of proteasome action. In addition, we show that GH internalization is independent of the presence of lysine residues in the cytosolic domain of the receptor, whereas its internalization can still be inhibited by proteasomal inhibitors. Thus, GHR internalization requires proteasome action in addition to an active ubiquitin conjugation system, but ubiquitination of the GHR itself seems not to be required.  相似文献   

20.
Myosin VI is a motor protein that moves toward the minus end of actin filaments. It is involved in clathrin-mediated endocytosis and associates with clathrin-coated pits/vesicles at the plasma membrane. In this article the effect of the loss of myosin VI no insert isoform (NoI) on endocytosis in nonpolarized cells was examined. The absence of myosin VI in fibroblasts derived from the Snell''s waltzer mouse (myosin VI knock-out) gives rise to defective clathrin-mediated endocytosis with shallow clathrin-coated pits and a strong reduction in the internalization of clathrin-coated vesicles. To compensate for this defect in clathrin-mediated endocytosis, plasma membrane receptors such as the transferrin receptor (TfR) are internalized by a caveola-dependent pathway. Moreover the clathrin adaptor protein, AP-2, necessary for TfR internalization, follows the receptor and relocalizes in caveolae in Snell''s waltzer fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号