首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graziano V  McGrath WJ  Yang L  Mangel WF 《Biochemistry》2006,45(49):14632-14641
The SARS coronavirus main proteinase (SARS CoV main proteinase) is required for the replication of the severe acute respiratory syndrome coronavirus (SARS CoV), the virus that causes SARS. One function of the enzyme is to process viral polyproteins. The active form of the SARS CoV main proteinase is a homodimer. In the literature, estimates of the monomer-dimer equilibrium dissociation constant, KD, have varied more than 65,0000-fold, from <1 nM to more than 200 microM. Because of these discrepancies and because compounds that interfere with activation of the enzyme by dimerization may be potential antiviral agents, we investigated the monomer-dimer equilibrium by three different techniques: small-angle X-ray scattering, chemical cross-linking, and enzyme kinetics. Analysis of small-angle X-ray scattering data from a series of measurements at different SARS CoV main proteinase concentrations yielded KD values of 5.8 +/- 0.8 microM (obtained from the entire scattering curve), 6.5 +/- 2.2 microM (obtained from the radii of gyration), and 6.8 +/- 1.5 microM (obtained from the forward scattering). The KD from chemical cross-linking was 12.7 +/- 1.1 microM, and from enzyme kinetics, it was 5.2 +/- 0.4 microM. While each of these three techniques can present different, potential limitations, they all yielded similar KD values.  相似文献   

2.
The enzymatic activity of the SARS coronavirus main proteinase dimer was characterized by a sensitive, quantitative assay. The new, fluorogenic substrate, (Ala-Arg-Leu-Gln-NH)(2)-Rhodamine, contained a severe acute respiratory syndrome coronavirus (SARS CoV) main proteinase consensus cleavage sequence and Rhodamine 110, one of the most detectable compounds known, as the reporter group. The gene for the enzyme was cloned in the absence of purification tags, expressed in Escherichia coli and the enzyme purified. Enzyme activity from the SARS CoV main proteinase dimer could readily be detected at low pM concentrations. The enzyme exhibited a high K(m), and is unusually sensitive to ionic strength and reducing agents.  相似文献   

3.
Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS‐coronavirus (SARS‐CoV). SARS‐CoV entry is facilitated by the spike protein (S), which consists of an N‐terminal domain (S1) responsible for cellular attachment and a C‐terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS‐CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site‐directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH‐independent retroviral fusion proteins, SARS‐CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS‐CoV S2 analysis showed that specific hydrophobic positions at the C‐terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C‐terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C‐terminal hydrophobic residues led us to identify a 42‐residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation = 0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections.  相似文献   

4.
The worldwide outbreak of severe acute respiratory syndrome (SARS) was shown to be associated with a novel coronavirus (CoV) now called SARS CoV. We report here the generation of SARS CoV S protein-pseudotyped murine leukemia virus (MLV) vector particles. The wild-type S protein pseudotyped MLV vectors, although at a low efficiency. Partial deletion of the cytoplasmic tail of S dramatically increased infectivity of pseudotypes, with titers only two- to threefold lower than those of pseudotypes generated in parallel with the vesicular stomatitis virus G protein. S-pseudotyped MLV particles were used to analyze viral tropism. MLV(SARS) pseudotypes and wild-type SARS CoV displayed similar cell types and tissue and host restrictions, indicating that the expression of a functional receptor is the major restraint in permissiveness to SARS CoV infection. Efficient gene transfer could be detected in Vero and CaCo2 cells, whereas the level of gene marking of 293T, HeLa, and HepG2 cells was only slightly above background levels. A cat cell line and a dog cell line were not susceptible. Interestingly, PK-15, a porcine kidney cell line, and primary porcine kidney cells were also highly permissive for SARS S pseudotypes and wild-type SARS CoV. This finding suggests that swine may be susceptible to SARS infection and may be a source for infection of humans. Taken together, these results indicate that MLV(SARS) pseudotypes are highly valuable for functional studies of viral tropism and entry and, in addition, can be a powerful tool for the development of therapeutic entry inhibitors without posing a biohazard to human beings.  相似文献   

5.
We have identified the membrane-active regions of the severe acute respiratory syndrome coronavirus (SARS CoV) spike glycoprotein by determining the effect on model membrane integrity of a 16/18-mer SARS CoV spike glycoprotein peptide library. By monitoring the effect of this peptide library on membrane leakage in model membranes, we have identified three regions on the SARS CoV spike glycoprotein with membrane-interacting capabilities: region 1, located immediately upstream of heptad repeat 1 (HR1) and suggested to be the fusion peptide; region 2, located between HR1 and HR2, which would be analogous to the loop domain of human immunodeficiency virus type 1; and region 3, which would correspond to the pretransmembrane region. The identification of these membrane-active regions, which are capable of modifying the biophysical properties of phospholipid membranes, supports their direct role in SARS CoV-mediated membrane fusion, as well as facilitating the future development of SARS CoV entry inhibitors.  相似文献   

6.
Severe acute respiratory syndrome (SARS) is a novel human illness caused by a previously unrecognized coronavirus (CoV) termed SARS‐CoV. There are conflicting reports on the animal reservoir of SARS‐CoV. Many of the groups that argue carnivores are the original reservoir of SARS‐CoV use a phylogeny to support their argument. However, the phylogenies in these studies often lack outgroup and rooting criteria necessary to determine the origins of SARS‐CoV. Recently, SARS‐CoV has been isolated from various species of Chiroptera from China (e.g., Rhinolophus sinicus) thus leading to reconsideration of the original reservoir of SARS‐CoV. We evaluated the hypothesis that SARS‐CoV isolated from Chiroptera are the original zoonotic source for SARS‐CoV by sampling SARS‐CoV and non‐SARS‐CoV from diverse hosts including Chiroptera, as well as carnivores, artiodactyls, rodents, birds and humans. Regardless of alignment parameters, optimality criteria, or isolate sampling, the resulting phylogenies clearly show that the SARS‐CoV was transmitted to small carnivores well after the epidemic of SARS in humans that began in late 2002. The SARS‐CoV isolates from small carnivores in Shenzhen markets form a terminal clade that emerged recently from within the radiation of human SARS‐CoV. There is evidence of subsequent exchange of SARS‐CoV between humans and carnivores. In addition SARS‐CoV was transmitted independently from humans to farmed pigs (Sus scrofa). The position of SARS‐CoV isolates from Chiroptera are basal to the SARS‐CoV clade isolated from humans and carnivores. Although sequence data indicate that Chiroptera are a good candidate for the original reservoir of SARS‐CoV, the structural biology of the spike protein of SARS‐CoV isolated from Chiroptera suggests that these viruses are not able to interact with the human variant of the receptor of SARS‐CoV, angiotensin‐converting enzyme 2 (ACE2). In SARS‐CoV we study, both visually and statistically, labile genomic fragments and, putative key mutations of the spike protein that may be associated with host shifts. We display host shifts and candidate mutations on trees projected in virtual globes depicting the spread of SARS‐CoV. These results suggest that more sampling of coronaviruses from diverse hosts, especially Chiroptera, carnivores and primates, will be required to understand the genomic and biochemical evolution of coronaviruses, including SARS‐CoV. © The Willi Hennig Society 2008.  相似文献   

7.
The authors have developed a high-throughput screen (HTS) that allows for the identification of potential inhibitors of the severe acute respiratory syndrome coronavirus (SARS CoV) from large compound libraries. The luminescent-based assay measures the inhibition of SARS CoV-induced cytopathic effect (CPE) in Vero E6 cells. The assay was validated in 96-well plates in a BSL3 containment facility. The assay is sensitive and robust, with Z values > 0.6, signal to background (S/B) > 16, and signal to noise (S/N) > 3. The assay was further validated with 2 different diversity sets of compounds against the SARS CoV. The "hit" rate for both libraries was approximately 0.01%. The validated HTS assay was then employed to screen a 100,000-compound library against SARS CoV. The hit rate for the library in a single-dose format was determined to be approximately 0.8%. Screening of the 3 libraries resulted in the identification of several novel compounds that effectively inhibited the CPE of SARS CoV in vitro-compounds which will serve as excellent lead candidates for further evaluation. At a 10-microM concentration, 3 compounds with selective indexes (SI50) of > 53 were discovered.  相似文献   

8.
为了观察SARS冠状病毒在SARS患者粪便中的存在规律,建立了检测SARS冠状病毒RNA的逆转录-聚合酶链反应(RT-PCR)方法,并应用该方法检测了241份SARS患者粪便样本。部分PCR产物应用测序技术进行验证。RT-PCR的灵敏度为10^-10稀释度的病毒原液(原液为10^8TCID50/ml)。241份粪便样本的总体检出率为24.1%(58/241),其中发病后的前10d和20d的检出率均为50.0%。随着发病时间的延长,阳性检出率呈下降趋势。应用RT-PCR从粪便中检测SARS冠状病毒是可行的,在发病50d以后仍有17.0%左右的阳性检出率,提示SARS恢复期患者具有排毒的可能性,给后续的卫生防疫措施提供了一定的参考数据。  相似文献   

9.
With the outbreak of a new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), the public healthcare systems are facing great challenges. Coronavirus disease 2019 (COVID‐19) could develop into severe pneumonia, acute respiratory distress syndrome and multi‐organ failure. Remarkably, in addition to the respiratory symptoms, some COVID‐19 patients also suffer from cardiovascular injuries. Dipeptidyl peptidase‐4 (DPP‐4) is a ubiquitous glycoprotein which could act both as a cell membrane‐bound protein and a soluble enzymatic protein after cleavage and release into the circulation. Despite angiotensin‐converting enzyme 2 (ACE2), the recently recognized receptor of SARS‐CoV and SARS‐CoV‐2, which facilitated their entries into the host, DPP‐4 has been identified as the receptor of middle east respiratory syndrome coronavirus (MERS‐CoV). In the current review, we discussed the potential roles of DPP‐4 in COVID‐19 and the possible effects of DPP‐4 inhibitors on cardiovascular system in patients with COVID‐19.  相似文献   

10.
The Envelope protein (E) is one of the four structural proteins encoded by the genome of SARS‐CoV and SARS‐CoV‐2 Coronaviruses. It is an integral membrane protein, highly expressed in the host cell, which is known to have an important role in Coronaviruses maturation, assembly and virulence. The E protein presents a PDZ‐binding motif at its C‐terminus. One of the key interactors of the E protein in the intracellular environment is the PDZ containing protein PALS1. This interaction is known to play a key role in the SARS‐CoV pathology and suspected to affect the integrity of the lung epithelia. In this paper we measured and compared the affinity of peptides mimicking the E protein from SARS‐CoV and SARS‐CoV‐2 for the PDZ domain of PALS1, through equilibrium and kinetic binding experiments. Our results support the hypothesis that the increased virulence of SARS‐CoV‐2 compared to SARS‐CoV may rely on the increased affinity of its Envelope protein for PALS1.  相似文献   

11.
Lalitha Guruprasad 《Proteins》2020,88(11):1387-1393
Coronavirus disease 2019 (COVID-19) is a pandemic infectious disease caused by novel severe acute respiratory syndrome coronavirus-2 (SARS CoV-2). The SARS CoV-2 is transmitted more rapidly and readily than SARS CoV. Both, SARS CoV and SARS CoV-2 via their glycosylated spike proteins recognize the human angiotensin converting enzyme-2 (ACE-2) receptor. We generated multiple sequence alignments and phylogenetic trees for representative spike proteins of SARS CoV and SARS CoV-2 from various host sources in order to analyze the specificity in SARS CoV-2 spike proteins required for causing infection in humans. Our results show that among the genomes analyzed, two sequence regions in the N-terminal domain “MESEFR” and “SYLTPG” are specific to human SARS CoV-2. In the receptor-binding domain, two sequence regions “VGGNY“ and ”EIYQAGSTPCNGV” and a disulfide bridge connecting 480C and 488C in the extended loop are structural determinants for the recognition of human ACE-2 receptor. The complete genome analysis of representative SARS CoVs from bat, civet, human host sources, and human SARS CoV-2 identified the bat genome (GenBank code: MN996532.1) as closest to the recent novel human SARS CoV-2 genomes. The bat SARS CoV genomes (GenBank codes: MG772933 and MG772934) are evolutionary intermediates in the mutagenesis progression toward becoming human SARS CoV-2.  相似文献   

12.
Lai CC  Jou MJ  Huang SY  Li SW  Wan L  Tsai FJ  Lin CW 《Proteomics》2007,7(9):1446-1460
The pathogenesis of severe acute respiratory syndrome coronavirus (SARS CoV) is an important issue for treatment and prevention of SARS. Previously, SARS CoV 3C-like protease (3CLpro) has been demonstrated to induce apoptosis via the activation of caspase-3 and caspase-9 (Lin, C. W., Lin, K. H., Hsieh, T. H., Shiu, S. Y. et al., FEMS Immunol. Med. Microbiol. 2006, 46, 375-380). In this study, proteome analysis of the human promonocyte HL-CZ cells expressing SARS CoV 3CLpro was performed using 2-DE and nanoscale capillary LC/ESI quadrupole-TOF MS. Functional classification of identified up-regulated proteins indicated that protein metabolism and modification, particularly in the ubiquitin proteasome pathway, was the main biological process occurring in SARS CoV 3CLpro-expressing cells. Thirty-six percent of identified up-regulated proteins were located in the mitochondria, including apoptosis-inducing factor, ATP synthase beta chain and cytochrome c oxidase. Interestingly, heat shock cognate 71-kDa protein (HSP70), which antagonizes apoptosis-inducing factor was shown to down-regulate and had a 5.29-fold decrease. In addition, confocal image analysis has shown release of mitochondrial apoptogenic apoptosis-inducing factor and cytochrome c into the cytosol. Our results revealed that SARS CoV 3CLpro could be considered to induce mitochondrial-mediated apoptosis. The study provides system-level insights into the interaction of SARS CoV 3CLpro with host cells, which will be helpful in elucidating the molecular basis of SARS CoV pathogenesis.  相似文献   

13.
SARS‐CoV‐2 is a novel betacoronavirus that has caused the global health crisis known as COVID‐19. The implications of mitochondrial dysfunction with COVID‐19 are discussed as well as deregulated mitochondria and inter‐organelle functions as a posited comorbidity enhancing detrimental outcomes. Many environmental chemicals (ECs) and endocrine‐disrupting chemicals can do damage to mitochondria and cause mitochondrial dysfunction. During infection, SARS‐CoV‐2 via its binding target ACE2 and TMPRSS2 can disrupt mitochondrial function. Viral genomic RNA and structural proteins may also affect the normal function of the mitochondria‐endoplasmic reticulum‐Golgi apparatus. Drugs considered for treatment of COVID‐19 should consider effects on organelles including mitochondria functions. Mitochondrial self‐balance and clearance via mitophagy are important in SARS‐CoV‐2 infection, which indicate monitoring and protection of mitochondria against SARS‐CoV‐2 are important. Mitochondrial metabolomic analysis may provide new indicators of COVID‐19 prognosis. A better understanding of the role of mitochondria during SARS‐CoV‐2 infection may help to improve intervention therapies and better protect mitochondrial disease patients from pathogens as well as people living with poor nutrition and elevated levels of socioeconomic stress and ECs.  相似文献   

14.
为建立恒河猴严重急性呼吸道综合征(SARS)的模型并对其致病特点进行观察,采用病毒分离、免疫荧光、光镜及RT-PCR方法对病毒感染组和非感染组恒河猴不同时间、不同组织或分泌物进行检测。结果显示从恒河猴不同组织中分离到病毒,而且在病毒感染后第2d和第5d的血液、第7、9d的鼻咽分泌物、第3d的粪、第5d的粪尿中均检测到SARS-CoV RNA。光镜观察到病毒感染组肺组织肺泡问隔增宽,有大量淋巴细胞、单核细胞浸润,肺泡腔有渗出,甚至形成透明膜样物;多个肺泡形成机化性肺炎的表现。感染组肝组织可见较大的坏死灶,并伴有大量炎性细胞浸润。结论认为已成功建立了恒河猴SARS模型,可用于评价抗SARS药物和疫苗的研究。  相似文献   

15.
Since the emergence of the severe acute respiratory syndrome (SARS) to date, neither an effective antiviral drug nor a vaccine against SARS is available. However, it was found that a mixture of two HIV-1 proteinase inhibitors, lopinavir and ritonavir, exhibited some signs of effectiveness against the SARS virus. To understand the fine details of the molecular interactions between these proteinase inhibitors and the SARS virus via complexation, molecular dynamics simulations were carried out for the SARS-CoV 3CLpro free enzyme (free SARS) and its complexes with lopinavir (SARS-LPV) and ritonavir (SARS-RTV). The results show that flap closing was clearly observed when the inhibitors bind to the active site of SARS-CoV 3CLpro. The binding affinities of LPV and RTV to SARS-CoV 3CLpro do not show any significant difference. In addition, six hydrogen bonds were detected in the SARS-LPV system, while seven hydrogen bonds were found in SARS-RTV complex.  相似文献   

16.
Coronaviruses (CoVs) are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS) in 2002/2003 has demonstrated human vulnerability to (Coronavirus) CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B) as interaction partners of the CoV non-structural protein 1 (Nsp1). These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA) blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock.  相似文献   

17.
The 3C-like proteinase of severe acute respiratory syndrome (SARS) coronavirus has been proposed to be a key target for structural-based drug design against SARS. Accurate determination of the dimer dissociation constant and the role of the N-finger (residues 1-7) will provide more insights into the enzyme catalytic mechanism of SARS 3CL proteinase. The dimer dissociation constant of the wild-type protein was determined to be 14.0microM by analytical ultracentrifugation method. The N-finger fragment of the enzyme plays an important role in enzyme dimerization as shown in the crystal structure. Key residues in the N-finger have been studied by site-directed mutagenesis, enzyme assay, and analytical ultracentrifugation. A single mutation of M6A was found to be critical to maintain the dimer structure of the enzyme. The N-terminal octapeptide N8 and its mutants were also synthesized and tested for their potency as dimerization inhibitors. Peptide cleavage assay confirms that peptide N8 is a dimerization inhibitor with a K(i) of 2.20mM. The comparison of the inhibitory activities of N8 and its mutants indicates that the hydrophobic interaction of Met-6 and the electrostatic interaction of Arg-4 contribute most for inhibitor binding. This study describes the first example of inhibitors targeting the dimeric interface of SARS 3CL proteinase, providing a novel strategy for drug design against SARS and other coronaviruses.  相似文献   

18.
The serious coronavirus disease‐2019 (COVID‐19) was first reported in December 2019 in Wuhan, China. COVID‐19 is an infectious disease caused by severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2). Angiotensin converting enzyme 2(ACE2) is the cellular receptor for SARS‐CoV‐2. Considering the critical roles of testicular cells for the transmission of genetic information between generations, we analyzed single‐cell RNA‐sequencing (scRNA‐seq) data of adult human testis. The mRNA expression of ACE2 was expressed in both germ cells and somatic cells. Moreover, the positive rate of ACE2 in testes of infertile men was higher than normal, which indicates that SARS‐CoV‐2 may cause reproductive disorders through pathway activated by ACE2 and the men with reproductive disorder may easily to be infected by SARS‐CoV‐2. The expression level of ACE2 was related to the age, and the mid‐aged with higher positive rate than young men testicular cells. Taken together, this research provides a biological background of the potential route for infection of SARS‐CoV‐2 and may enable rapid deciphering male‐related reproductive disorders induced by COVID‐19.  相似文献   

19.
A cluster of pneumonia (COVID‐19) cases have been found in Wuhan China in late December, 2019, and subsequently, a novel coronavirus with a positive stranded RNA was identified to be the aetiological virus (severe acute respiratory syndrome coronavirus 2, SARS‐CoV‐2), which has a phylogenetic similarity to severe acute respiratory syndrome coronavirus (SARS‐CoV). SARS‐CoV‐2 transmits mainly through droplets and close contact and the elder or people with chronic diseases are high‐risk population. People affected by SARS‐CoV‐2 can be asymptomatic, which brings about more difficulties to control the transmission. COVID‐19 has become pandemic rapidly after onset, and so far the infected people have been above 2 000 000 and more than 130 000 died worldwide according to COVID‐19 situation dashboard of World Health Organization ( https://covid19.who.int ). Here, we summarized the current known knowledge regarding epidemiological, pathogenesis, pathology, clinical features, comorbidities and treatment of COVID‐19/ SARS‐CoV‐2 as reference for the prevention and control COVID‐19.  相似文献   

20.
Small animal models are needed in order to evaluate the efficacy of candidate vaccines and antivirals directed against the severe acute respiratory syndrome coronavirus (SARS CoV). We investigated the ability of SARS CoV to infect 5-week-old Golden Syrian hamsters. When administered intranasally, SARS CoV replicates to high titers in the lungs and nasal turbinates. Peak replication in the lower respiratory tract was noted on day 2 postinfection (p.i.) and was cleared by day 7 p.i. Low levels of virus were present in the nasal turbinates of a few hamsters at 14 days p.i. Viral replication in epithelial cells of the respiratory tract was accompanied by cellular necrosis early in infection, followed by an inflammatory response coincident with viral clearance, focal consolidation in pulmonary tissue, and eventual pulmonary tissue repair. Despite high levels of virus replication and associated pathology in the respiratory tract, the hamsters showed no evidence of disease. Neutralizing antibodies were detected in sera at day 7 p.i., and mean titers at day 28 p.i. exceeded 1:400. Hamsters challenged with SARS CoV at day 28 p.i. were completely protected from virus replication and accompanying pathology in the respiratory tract. Comparing these data to the mouse model, SARS CoV replicates to a higher titer and for a longer duration in the respiratory tract of hamsters and is accompanied by significant pathology that is absent in mice. Viremia and extrapulmonary spread of SARS CoV to liver and spleen, which are seen in hamsters, were not detected in mice. The hamster, therefore, is superior to the mouse as a model for the evaluation of antiviral agents and candidate vaccines against SARS CoV replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号