首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Few studies have examined how life history traits and the climate envelope influence the ability of species to respond to climate change and habitat degradation. In this study, we test whether 18 species-specific variables, related to the climate envelope, ecological envelope and life history, could predict recent population trends (over 17 years) of 71 common breeding bird species in France. Habitat specialists were declining at a much higher rate than generalists, a sign that habitat quality is decreasing globally. The lower the thermal maximum (temperature at the hot edge of the climate envelope), the more negative are the population trends and the less tolerant these species are climate warming, regardless of the thermal range over which these species occur. The life history trait 'the number of broods per year' was positively related to recent trends, suggesting that single-brooded species might be more sensitive to advances in food peak due to climate change, as it increases the risk of mistiming their single-breeding event. Annual fecundity explained long-term declines, as it is a good proxy for most other demographic rates, with shorter-lived species being more sensitive to global change: individuals of species with higher fecundity might have too short a life to learn to adapt to directional changes in their environment. Finally, there was evidence that natal dispersal was a predictor of recent trends, with species with high natal dispersal experiencing smaller population declines than species with low natal dispersal. This is expected if the higher the natal dispersal, the larger the ability to shift spatially when facing changes in local habitat or climate, in order to track optimal conditions and adapt to global change. Identifying decline-promoting factors allow us to infer mechanisms responsible for observed declines in wild bird populations facing global change, and by doing so allow for a more pre-emptive approach to conservation planning.  相似文献   

2.
Habitat persistence should influence dispersal ability, selecting for stronger dispersal in habitats of lower temporal stability. As standing (lentic) freshwater habitats are on average less persistent over time than running (lotic) habitats, lentic species should show higher dispersal abilities than lotic species. Assuming that climate is an important determinant of species distributions, we hypothesize that lentic species should have distributions that are closer to equilibrium with current climate, and should more rapidly track climatic changes. We tested these hypotheses using datasets from 1988 and 2006 containing all European dragon- and damselfly species. Bioclimatic envelope models showed that lentic species were closer to climatic equilibrium than lotic species. Furthermore, the models over-predicted lotic species ranges more strongly than lentic species ranges, indicating that lentic species track climatic changes more rapidly than lotic species. These results are consistent with the proposed hypothesis that habitat persistence affects the evolution of dispersal.  相似文献   

3.
Using a case study of an isolated management unit of Sichuan snub‐nosed monkey (Rhinopithecus roxellana), we assess the extent that climate change will impact the species’ habitat distribution in the current period and projected into the 2050s. We identify refugia that could maintain the population under climate change and determine dispersal paths for movement of the population to future suitable habitats. Hubei Province, China. We identified climate refugia and potential movements by integrating bioclimatic models with circuit theory and least‐cost model for the current period (1960–1990) and the 2050s (2041–2060). We coupled a maximum entropy algorithm to predict suitable habitat for the current and projected future periods. Suitable habitat areas that were identified during both time periods and that also satisfied home range and dispersal distance conditions were delineated as refugia. We mapped potential movements measured as current flow and linked current and future habitats using least‐cost corridors. Our results indicate up to 1,119 km2 of currently suitable habitat within the study range. Based on our projections, a habitat loss of 67.2% due to climate change may occur by the 2050s, resulting in a reduced suitable habitat area of 406 km2 and very little new habitat. The refugia areas amounted to 286 km2 and were located in Shennongjia National Park and Badong Natural Reserve. Several connecting corridors between the current and future habitats, which are important for potential movements, were identified. Our assessment of the species predicted a trajectory of habitat loss following anticipated future climate change. We believe conservation efforts should focus on refugia and corridors when planning for future species management. This study will assist conservationists in determining high‐priority regions for effective maintenance of the endangered population under climate change and will encourage increased habitat connectivity.  相似文献   

4.
The dispersal capabilities of intertidal organisms may represent a key factor to their survival in the face of global warming, as species that cannot adapt to the various effects of climate change will have to migrate to track suitable habitat. Although species with pelagic larval phases might be expected to have a greater capacity for dispersal than those with benthic larvae, interspecies comparisons have shown that this is not always the case. Consequently, population genetic approaches are being increasingly used to gain insights into dispersal through studying patterns of gene flow. In the present study, we used nuclear single‐nucleotide polymorphisms (SNPs) and mitochondrial DNA (mtDNA) sequencing to elucidate fine‐scale patterns of genetic variation between populations of the Black Katy Chiton, Katharina tunicata, separated by 15–150 km in south‐west Vancouver Island. Both the nuclear and mitochondrial data sets revealed no genetic differentiation between the populations studied, and an isolation‐with‐migration analysis indicated extensive local‐scale gene flow, suggesting an absence of barriers to dispersal. Population demographic analysis also revealed long‐term population stability through previous periods of climate change associated with the Pleistocene glaciations. Together, the findings of the present study suggest that this high potential for dispersal may allow K. tunicata to respond to current global warming by tracking suitable habitat, consistent with its long‐term demographic stability through previous changes in the Earth's climate. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 589–597.  相似文献   

5.
Confidence in projections of the future distributions of species requires demonstration that recently-observed changes could have been predicted adequately. Here we use a dynamic model framework to demonstrate that recently-observed changes at the expanding northern boundaries of three British butterfly species can be predicted with good accuracy. Previous work established that the distributions of the study species currently lag behind climate change, and so we presumed that climate is not currently a major constraint at the northern range margins of our study species. We predicted 1970–2000 distribution changes using a colonisation model, MIGRATE, superimposed on a high-resolution map of habitat availability. Thirty-year rates and patterns of distribution change could be accurately predicted for each species (κ goodness-of-fit of models >0.64 for all three species, corresponding to >83% of grid cells correctly assigned), using a combination of individual species traits, species-specific habitat associations and distance-dependent dispersal. Sensitivity analyses showed that population productivity was the most important determinant of the rate of distribution expansion (variation in dispersal rate was not studied because the species are thought to be similar in dispersal capacity), and that each species' distribution prior to expansion was critical in determining the spatial pattern of the current distribution. In future, modelling approaches that combine climate suitability and spatially-explicit population models, incorporating demographic variables and habitat availability, are likely to be valuable tools in projecting species' responses to climatic change and hence in anticipating management to facilitate species' dispersal and persistence.  相似文献   

6.
Investigating how species coped with past environmental changes informs how modern species might face human-induced global changes, notably via the study of historical extinction, a dominant feature that has shaped current biodiversity patterns. The genus Bombus, which comprises 250 mostly cold-adapted species, is an iconic insect group sensitive to current global changes. Through a combination of habitat loss, pathogens and climate change, bumblebees have experienced major population declines, and several species are threatened with extinction. Using a time-calibrated tree of Bombus, we analyse their diversification dynamics and test hypotheses about the role of extinction during major environmental changes in their evolutionary history. These analyses support a history of fluctuating species dynamics with two periods of historical species loss in bumblebees. Dating estimates gauge that one of these events started after the middle Miocene climatic optimum and one during the early Pliocene. Both periods are coincident with global climate change that may have extirpated Bombus species. Interestingly, bumblebees experienced high diversification rates during the Plio-Pleistocene glaciations. We also found evidence for a major species loss in the past one million years that may be continuing today.  相似文献   

7.
The future distribution of river fishes will be jointly affected by climate and land use changes forcing species to move in space. However, little is known whether fish species will be able to keep pace with predicted climate and land use‐driven habitat shifts, in particular in fragmented river networks. In this study, we coupled species distribution models (stepwise boosted regression trees) of 17 fish species with species‐specific models of their dispersal (fish dispersal model FIDIMO) in the European River Elbe catchment. We quantified (i) the extent and direction (up‐ vs. downstream) of predicted habitat shifts under coupled “moderate” and “severe” climate and land use change scenarios for 2050, and (ii) the dispersal abilities of fishes to track predicted habitat shifts while explicitly considering movement barriers (e.g., weirs, dams). Our results revealed median net losses of suitable habitats of 24 and 94 river kilometers per species for the moderate and severe future scenarios, respectively. Predicted habitat gains and losses and the direction of habitat shifts were highly variable among species. Habitat gains were negatively related to fish body size, i.e., suitable habitats were projected to expand for smaller‐bodied fishes and to contract for larger‐bodied fishes. Moreover, habitats of lowland fish species were predicted to shift downstream, whereas those of headwater species showed upstream shifts. The dispersal model indicated that suitable habitats are likely to shift faster than species might disperse. In particular, smaller‐bodied fish (<200 mm) seem most vulnerable and least able to track future environmental change as their habitat shifted most and they are typically weaker dispersers. Furthermore, fishes and particularly larger‐bodied species might substantially be restricted by movement barriers to respond to predicted climate and land use changes, while smaller‐bodied species are rather restricted by their specific dispersal ability.  相似文献   

8.
D. I. LEECH  & H. Q. P. CRICK 《Ibis》2007,149(S2):128-145
There is now overwhelming evidence that an increase in the concentration of greenhouse gases in the Earth's atmosphere has caused global temperatures to increase by 0.6 °C since 1900 and further increases of between 1.4 and 5.8 °C are predicted over the next century. Changes in climatic conditions have already influenced the demography, phenology and distribution of a wide range of plant and animal taxa. This review focuses on the impacts, both observed and potential, of climate change on birds breeding in temperate woodlands of the Western Palaearctic, a significant proportion of which are currently declining. Changes in ambient temperatures and patterns of precipitation may have direct and indirect effects on the survival rates and productivity of bird species, thus influencing population sizes. For some species or populations, the timing of events such as egg-laying and return from the wintering grounds is also changing in relation to shifts in the peak of food availability during the breeding season. The degree to which different individuals are able to track these temporal changes will have a significant bearing on population sizes and distributions in the future. Unless active management steps are taken, the relatively low dispersal rates of tree species may lead to a decrease in the total area of some woodland habitat types as losses at the southern edge of the range are likely to occur much more quickly than expansion at the northern edge. In addition, the dispersal rates of many woodland birds are themselves low, which could affect their ability to move to new habitat patches if currently occupied areas become unsuitable. Thus, woodland birds may be particularly susceptible to the impacts of climate change.  相似文献   

9.
Many species have already shifted their distributions in response to recent climate change. Here, we aimed at predicting the future breeding distributions of European birds under climate, land‐use, and dispersal scenarios. We predicted current and future distributions of 409 species within an ensemble forecast framework using seven species distribution models (SDMs), five climate scenarios and three emission and land‐use scenarios. We then compared results from SDMs using climate‐only variables, habitat‐only variables or both climate and habitat variables. In order to account for a species’ dispersal abilities, we used natal dispersal estimates and developed a probabilistic method that produced a dispersal scenario intermediate between the null and full dispersal scenarios generally considered in such studies. We then compared results from all scenarios in terms of future predicted range changes, range shifts, and variations in species richness. Modeling accuracy was better with climate‐only variables than with habitat‐only variables, and better with both climate and habitat variables. Habitat models predicted smaller range shifts and smaller variations in range size and species richness than climate models. Using both climate and habitat variables, it was predicted that the range of 71% of the species would decrease by 2050, with a 335 km median shift. Predicted variations in species richness showed large decreases in the southern regions of Europe, as well as increases, mainly in Scandinavia and northern Russia. The partial dispersal scenario was significantly different from the full dispersal scenario for 25% of the species, resulting in the local reduction of the future predicted species richness of up to 10%. We concluded that the breeding range of most European birds will decrease in spite of dispersal abilities close to a full dispersal hypothesis, and that given the contrasted predictions obtained when modeling climate change only and land‐use change only, both scenarios must be taken into consideration.  相似文献   

10.
Identifying the species most vulnerable to extinction as a result of climate change is a necessary first step in mitigating biodiversity decline. Species distribution modeling (SDM) is a commonly used tool to assess potential climate change impacts on distributions of species. We use SDMs to predict geographic ranges for 243 birds of Australian tropical savannas, and to project changes in species richness and ranges under a future climate scenario between 1990 and 2080. Realistic predictions require recognition of the variability in species capacity to track climatically suitable environments. Here we assess the effect of dispersal on model results by using three approaches: full dispersal, no dispersal and a partial-dispersal scenario permitting species to track climate change at a rate of 30 km per decade. As expected, the projected distributions and richness patterns are highly sensitive to the dispersal scenario. Projected future range sizes decreased for 66% of species if full dispersal was assumed, but for 89% of species when no dispersal was assumed. However, realistic future predictions should not assume a single dispersal scenario for all species and as such, we assigned each species to the most appropriate dispersal category based on individual mobility and habitat specificity; this permitted the best estimates of where species will be in the future. Under this "realistic" dispersal scenario, projected ranges sizes decreased for 67% of species but showed that migratory and tropical-endemic birds are predicted to benefit from climate change with increasing distributional area. Richness hotspots of tropical savanna birds are expected to move, increasing in southern savannas and southward along the east coast of Australia, but decreasing in the arid zone. Understanding the complexity of effects of climate change on species' range sizes by incorporating dispersal capacities is a crucial step toward developing adaptation policies for the conservation of vulnerable species.  相似文献   

11.
Habitat fragmentation can restrict geneflow, reduce neighbourhood effective population size, and increase genetic drift and inbreeding in small, isolated habitat remnants. The extent to which habitat fragmentation leads to population fragmentation, however, differs among landscapes and taxa. Commonly, researchers use information on the current status of a species to predict population effects of habitat fragmentation. Such methods, however, do not convey information on species-specific responses to fragmentation. Here, we compare levels of past population differentiation, estimated from microsatellite genotypes, with contemporary dispersal rates, estimated from multi-strata capture-recapture models, to infer changes in mobility over time in seven sympatric, forest-dependent bird species of a Kenyan cloud forest archipelago. Overall, populations of sedentary species were more strongly differentiated and clustered compared to those of vagile ones, while geographical patterning suggested an important role of landscape structure in shaping genetic variation. However, five of seven species with broadly similar levels of genetic differentiation nevertheless differed substantially in their current dispersal rates. We conclude that post-fragmentation levels of vagility, without reference to past population connectivity, may not be the best predictor of how forest fragmentation affects the life history of forest-dependent species. As effective conservation strategies often hinge on accurate prediction of shifts in ecological and genetic relationships among populations, conservation practices based solely upon current population abundances or movements may, in the long term, prove to be inadequate.  相似文献   

12.
Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range.  相似文献   

13.
There is increasing evidence that the distributions of a large number of species are shifting with global climate change as they track changing surface temperatures that define their thermal niche. Modelling efforts to predict species distributions under future climates have increased with concern about the overall impact of these distribution shifts on species ecology, and especially where barriers to dispersal exist. Here we apply a bio‐climatic envelope modelling technique to investigate the impacts of climate change on the geographic range of ten cetacean species in the eastern North Atlantic and to assess how such modelling can be used to inform conservation and management. The modelling process integrates elements of a species' habitat and thermal niche, and employs “hindcasting” of historical distribution changes in order to verify the accuracy of the modelled relationship between temperature and species range. If this ability is not verified, there is a risk that inappropriate or inaccurate models will be used to make future predictions of species distributions. Of the ten species investigated, we found that while the models for nine could successfully explain current spatial distribution, only four had a good ability to predict distribution changes over time in response to changes in water temperature. Applied to future climate scenarios, the four species‐specific models with good predictive abilities indicated range expansion in one species and range contraction in three others, including the potential loss of up to 80% of suitable white‐beaked dolphin habitat. Model predictions allow identification of affected areas and the likely time‐scales over which impacts will occur. Thus, this work provides important information on both our ability to predict how individual species will respond to future climate change and the applicability of predictive distribution models as a tool to help construct viable conservation and management strategies.  相似文献   

14.
Warming increases the spread of an invasive thistle   总被引:1,自引:0,他引:1  
Zhang R  Jongejans E  Shea K 《PloS one》2011,6(6):e21725

Background

Global warming and shifted precipitation regimes increasingly affect species abundances and distributions worldwide. Despite a large literature on species'' physiological, phenological, growth, and reproductive responses to such climate change, dispersal is rarely examined. Our study aims to test whether the dispersal ability of a non-native, wind-dispersed plant species is affected by climate change, and to quantify the ramifications for future invasion spread rates.

Methodology/Principal Findings

We experimentally increased temperature and precipitation in a two-cohort, factorial field study (n = 80). We found an overwhelming warming effect on plant life history: warming not only improved emergence, survival, and reproduction of the thistle Carduus nutans, but also elevated plant height, which increased seed dispersal distances. Using spatial population models, we demonstrate that these empirical warming effects on demographic vital rates, and dispersal parameters, greatly exacerbate spatial spread. Predicted levels of elevated winter precipitation decreased seed production per capitulum, but this only slightly offset the warming effect on spread. Using a spread rate decomposition technique (c*-LTRE), we also found that plant height-mediated changes in dispersal contribute most to increased spread rate under climate change.

Conclusions/Significance

We found that both dispersal and spread of this wind-dispersed plant species were strongly impacted by climate change. Dispersal responses to climate change can improve, or diminish, a species'' ability to track climate change spatially, and should not be overlooked. Methods that combine both demographic and dispersal responses thus will be an invaluable complement to projections of suitable habitat under climate change.  相似文献   

15.
Climate change is likely to alter population connectivity, particularly for species associated with higher elevation environments. The goal of this study is to predict the potential effects of future climate change on population connectivity and genetic diversity of American marten populations across a 30.2 million hectare region of the in the US northern Rocky Mountains. We use a landscape resistance model validated from empirical landscape genetics modeling to predict the current and expected future extent and fragmentation of American marten dispersal habitat under five climate change scenarios, corresponding to climatic warming of between 0.7 and 3.3 °C, consistent with expected climate change by year 2080. We predict the regions of the current and future landscapes where gene flow is expected to be governed by isolation by distance and the regions where population fragmentation is expected to limit gene flow. Finally, we predict changes in the strength and location of predicted movement corridors, fracture zones and the location of dispersal barriers across the study area in each scenario. We found that under the current climate, gene flow is predicted to be limited primarily by distance (isolation), and landscape structure does not significantly limit gene flow, resulting in very high genetic diversity over most of the study area. Projected climatic warming substantially reduces the extent and increases the fragmentation of marten populations in the western and northwestern parts of the study area. In contrast, climate change is not predicted to fragment the extensive higher elevation mountain massifs in central Idaho, the northern U.S. continental divide, and Greater Yellowstone Ecosystem. In addition, we show locations in the study area that are important corridors in the current landscape that remain intact across the climate change scenarios.  相似文献   

16.
Most predictions of vegetation responses to anthropogenic climate change over the next 100 yr are based on plant physiological tolerances and do not account for the ability of plant species to migrate over the distances required in the time available, or the impact of habitat fragmentation on this ability. This review assesses the maximum routine dispersal distances achievable in tropical East Asia and their vulnerability to human impacts. Estimates for various plant–vector combinations range from < 10 m, for species dispersed by ants or mechanical means, to > 10 km for some species dispersed by wind (tiny seeds), water, fruit pigeons, large fruit bats (tiny seeds), elephants, rhinoceroses, and people. Most plant species probably have maximum dispersal distances in the 100–1000 m range, but the widespread, canopy-dominant Dipterocarpaceae and Fagaceae are normally dispersed < 100 m. Large fruit bats and fruit pigeons are particularly important for long-distance dispersal in fragmented landscapes and should be protected from hunting. The maximum seed dispersal distances estimated in this study are potentially sufficient for many plant species to track temperature changes in steep topography, but are far too small for a significant role in mitigating climate change impacts in the lowlands, where temperature and rainfall gradients are much more shallow.  相似文献   

17.
Aim Apparent anthropogenic warming has been underway in South Africa for several decades, a period over which significant range shifts have been observed in some indigenous bird species. We asked whether these range shifts by birds are clearly consistent with either climate change or land use change being the primary driver. Location South Africa. Methods We categorized recent range changes among 408 South African terrestrial bird species and, using generalized linear mixed models, analysed ecological attributes of those species that have and have not changed their ranges. Results Fifty‐six of the 408 taxa studied have undergone significant range shifts. Most extended their ranges towards the south (towards cooler latitudes, consistent with climate‐change drivers) or west (towards drier and warmer habitats, inconsistent with climate drivers but consistent with land use drivers); very few moved east or north. Both southward and westward movers were habitat generalists. Furthermore, southward movers were mobile taxa (migrants and nomads), whereas westward movers were associated with human‐modified elements in the landscape, such as croplands, plantations or buildings. Main conclusions The results suggest that both land use changes and climate change may simultaneously be influencing dynamic range shifts by South African birds, but separating the relative strengths of these two drivers is challenging, not least because both are operating concurrently and may influence some species simultaneously. Those species that respond to land use change by contracting their ranges are likely to be among the species that will be most impacted by climate change if land use practices with negative impacts are occurring in areas anticipated to become climatic refugia for these species. This highlights a pressing need to develop dynamic models of species’ potential range shifts and changing abundances that incorporate population and dispersal processes, as well as ecological processes that influence habitat suitability.  相似文献   

18.
Climate change can affect the habitat resources available to species by changing habitat quantity, suitability and spatial configuration, which largely determine population persistence in the landscape. In this context, dispersal is a central process for species to track their niche. Assessments of the amount of reachable habitat (ARH) using static snap-shots do not account, however, for the temporal overlap of habitat patches that may enhance stepping-stone effects. Here, we quantified the impacts of climate change on the ARH using a spatio–temporal connectivity model. We first explored the importance of spatio–temporal connectivity relative to purely spatial connectivity in a changing climate by generating virtual species distributions and analyzed the relative effects of changes in habitat quantity, suitability and configuration. Then, we studied the importance of spatio–temporal connectivity in three vertebrate species with divergent responses to climate change in North America (grey wolf, Canadian lynx and white-tailed deer). We found that the spatio–temporal connectivity could enhance the stepping-stone effect for species predicted to experience range contractions, and the relative importance of the spatio–temporal connectivity increased with the reduction in habitat quantity and suitability. Conversely, for species that are likely to expand their ranges, spatio–temporal connectivity had no additional contribution to improve the ARH. We also found that changes in habitat amount (quantity and suitability) were more influential than changes in habitat configuration in determining the relative importance of spatio–temporal connectivity. We conclude that spatio–temporal connectivity may provide less biased and more realistic estimates of habitat connectivity than purely spatial connectivity.  相似文献   

19.
The climate change risk to biodiversity operates alongside a range of anthropogenic pressures. These include habitat loss and fragmentation, which may prevent species from migrating between isolated habitat patches in order to track their suitable climate space. Predictive modelling has advanced in scope and complexity to integrate: (i) projected shifts in climate suitability, with (ii) spatial patterns of landscape habitat quality and rates of dispersal. This improved ecological realism is suited to data-rich model species, though its broader generalisation comes with accumulated uncertainties, e.g. incomplete knowledge of species response to variable habitat quality, parameterisation of dispersal kernels etc. This study adopts ancient woodland indicator species (lichen epiphytes) as a guild that couples relative simplicity with biological rigour. Subjectively-assigned indicator species were statistically tested against a binary habitat map of woodlands of known continuity (>250 yr), and bioclimatic models were used to demonstrate trends in their increased/decreased environmental suitability under conditions of ‘no dispersal’. Given the expectation of rapid climate change on ecological time-scales, no dispersal for ancient woodland indicators becomes a plausible assumption. The risk to ancient woodland indicators is spatially structured (greater in a relative continental compared to an oceanic climatic zone), though regional differences are weakened by significant variation (within regions) in woodland extent. As a corollary, ancient woodland indicators that are sensitive to projected climate change scenarios may be excellent targets for monitoring climate change impacts for biodiversity at a site-scale, including the outcome of strategic habitat management (climate change adaptation) designed to offset risk for dispersal-limited species.  相似文献   

20.
Future changes in climate are imminent and they threat endangered and rare species due to habitat destruction. The Asiatic black bear (Ursus thibetanus gedrosianus) is a rare and vulnerable species whose habitat fragmentation and habitat loss decreased the size of its population significantly. Climate change is another threat to this species that is investigated in this research work. Aiming at this goal, ten species distribution models (SDMs) were applied as helpful tools for evaluating the potential effectiveness of climate change in habitat suitability of Asiatic black bear in Iran. Potential dispersal of Asiatic black bear was modeled as a function of 32 environmental variables for the current time and 2070 for 44 climate change scenarios (CC scenario) of future climate. Our results showed that modeling result depended on type of model. Our results confirmed that one of the greatest threats in the near future for Asiatic black bear was the change of suitable habitat due to climate change. All the CC scenarios showed that migration of this species would be to the north and west areas with higher elevation and that an increase in area would be more than a decrease in area in all scenarios. Recognizing and protecting potential future habitats are of the important activities to conserve this species and identify areas with conservation priority.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号