首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Reaction of rat muscle AMP deaminase with low molar excess of tetranitromethane results in a rapid loss of free thiol groups and a concomitant decrease in enzyme activity at high, but not at low, AMP concentration. This modification appears to be limited to the same non-essential thiol groups reactive towards specific reagents in non-denaturing conditions. On incubation with higher molar excess of tetranitromethane, a loss of enzyme activity is observed, which correlates with nitration of tyrosine residues. By amino acid analysis, approximately there tyrosine residues per subunit are estimated to be nitrated in the completely inactivated enzyme. The kinetic properties of the partially inactivated AMP deaminase reveal a negative co-operatively behaviour at approximately half saturation. This suggests that modification of tyrosine residues is also responsible for alteration of the binding properties of the hypothesized activating site of AMP deaminase.  相似文献   

2.
NMR spectroscopy showed fructose-1,6-bisphosphate aldolase from rabbit muscle accepts as substrates, in lieu of glyceraldehyde 3-phosphate, the oxoaldehydes methylglyoxal and phenylglyoxal but not hydroxymethylglyoxal. The enzyme catalyzed an aldol condensation between the oxoaldehyde and dihydroxyacetone phosphate to form a monophosphorylated diketone and was inactivated in the process. Circumvention of this reaction, by metabolism of oxoaldehydes to hydroxy acids, may be a metabolic role for the glyoxalase enzyme system. Transketolase and transaldolase were found not to accept oxoaldehydes as substrates in place of glyceraldehyde 3-phosphate.  相似文献   

3.
T Chase  Jr 《The Biochemical journal》1986,239(2):435-443
Mannitol-1-phosphate dehydrogenase was purified to homogeneity, and some chemical and physical properties were examined. The isoelectric point is 4.19. Amino acid analysis and polyacrylamide-gel electrophoresis in presence of SDS indicate a subunit Mr of about 22,000, whereas gel filtration and electrophoresis of the native enzyme indicate an Mr of 45,000. Thus the enzyme is a dimer. Amino acid analysis showed cysteine, tyrosine, histidine and tryptophan to be present in low quantities, one, three, four and four residues per subunit respectively. The zinc content is not significant to activity. The enzyme is inactivated (greater than 99%) by reaction of 5,5'-dithiobis-(2-nitrobenzoate) with the single thiol group; the inactivation rate depends hyperbolically on reagent concentration, indicating non-covalent binding of the reagent before covalent modification. The pH-dependence indicated a pKa greater than 10.5 for the thiol group. Coenzymes (NAD+ and NADH) at saturating concentrations protect completely against reaction with 5,5'-dithiobis-(2-nitrobenzoate), and substrates (mannitol 1-phosphate, fructose 6-phosphate) protect strongly but not completely. These results suggest that the thiol group is near the catalytic site, and indicate that substrates as well as coenzymes bind to free enzyme. Dissociation constants were determined from these protective effects: 0.6 +/- 0.1 microM for NADH, 0.2 +/- 0.03 mM for NAD+, 9 +/- 3 microM for mannitol 1-phosphate, 0.06 +/- 0.03 mM for fructose 6-phosphate. The binding order for reaction thus may be random for mannitol 1-phosphate oxidation, though ordered for fructose 6-phosphate reduction. Coenzyme and substrate binding in the E X NADH-mannitol 1-phosphate complex is weaker than in the binary complexes, though in the E X NADH+-fructose 6-phosphate complex binding is stronger.  相似文献   

4.
Liquefying alpha-amylase from Bacillus amyloliquefaciens was inactivated by treatment with tetranitromethane and N-acetylimidazole. The loss of activity occurred with modification of five tyrosine residues. Preincubation of the enzyme with either the substrate or the competitive inhibitor at saturating levels provided complete protection against inactivation. However, the presence of substrate/inhibitor in the reaction mixture protected only two of the five modifiable tyrosine residues, suggesting the involvement of only two tyrosine residues at the active center. This was confirmed when hydroxylamine treatment of the acetylated enzyme fully restored the enzymatic activity. Both nitration and acetylation increased the apparent Km of the enzyme for soluble starch, which indicated that the tyrosine residues are involved in substrate binding. Reduction of nitrotyrosine residues to aminotyrosine residues failed to restore the enzymatic activity. So, the loss of activity on modification of tyrosine residues was ascribed to conformational perturbances and not simply to the changes in the ionic character of tyrosine residues.  相似文献   

5.
The flavoprotein nitroalkane oxidase from Fusarium oxysporum catalyzes the oxidation of nitroalkanes to the respective aldehydes or ketones with production of nitrite and hydrogen peroxide. The enzyme is irreversibly inactivated by incubation with tetranitromethane, a tyrosine-directed reagent, at pH 7.3. The inactivation is time-dependent and shows first-order kinetics for two half-lives of inactivation. Further inactivation can be achieved upon a second addition of tetranitromethane. A saturation kinetic pattern is observed when the rate of inactivation is determined versus the concentration of tetranitromethane, indicating that a reversible enzyme-inhibitor complex is formed before irreversible inactivation occurs. Values of 0.096 +/- 0.013 min(-1) and 12.9 +/- 3.8 mM were determined for the first-order rate constant for inactivation and the dissociation constant for the reversibly formed complex, respectively. The competitive inhibitor valerate protects the enzyme from inactivation by tetranitromethane, suggesting an active-site-directed inactivation. The UV-visible absorbance spectrum of the inactivated enzyme is perturbed with respect to that of the native enzyme, suggesting that treatment with tetranitromethane resulted in nitration of the enzyme. Comparison of tryptic maps of nitroalkane oxidase treated with tetranitromethane in the presence and absence of valerate shows a single peptide differentially labeled in the inactivated enzyme. The spectral properties of the modified peptide are consistent with nitration of a tyrosine residue. The amino acid sequence of the nitrated peptide is L-L-N-E-V-M-C-(NO(2)-Y)-P-L-F-D-G-G-N-I-G-L-R. The possible role of this tyrosine in substrate binding is discussed.  相似文献   

6.
The affinity label N-bromoacetylethanolamine phosphate (BrAcNHEtOP) has been used previously at pH 6.5 to identify His-359 of rabbit muscle aldolase as an active site residue. We now find that the specificity of the reagent is pH-dependent. At pH 8.5, alkylation with 14C-labeled BrAcNHEtOP abolishes both fructose-1,6-P2 cleavage activity and transaldolase activity. The stoichiometry of incorporation, the kinetics of inactivation, and the protection against inactivation afforded by a competitive inhibitor or dihydroxyacetone phosphate are consistent with the involvement of an active site residue. A comparison of 14C profiles obtained from chromatography on the amino acid analyzer of acid hydrolysates of inactivated and protected samples reveals that inactivation results from the alkylation of lysyl residues. The major peptide in tryptic digests of the inactivated enzyme has been isolated. Based on its amino acid composition and the known sequence of aldolase, Lys-146 is the residue preferentially alkylated by the reagent. Aldolase modified at His-359 is still subject to alkylation of lysine; thus Lys-146 and His-359 are not mutually exclusive sites. However, aldolase modified at Lys-146 is not subject to alkylation of histidine. One explanation of these observations is that modification of Lys-146 abolishes the binding capacity of aldolase for substrates and substrate analogs (BrAcNHEtOP), whereas modification of his-359 does not. Consistent with this explanation is the ability of aldolase modified at His-359 to form a Schiff base with substrate and the inability of aldolase modified at Lys-146 to do so. Therefore, Lys-146 could be one of the cationic groups that functions in electrostatic binding of the substrate's phosphate groups.  相似文献   

7.
Enterobacter aerogenes glycerol dehydrogenase (GlDH EC 1.1.1.6), a tetrameric NAD + specific enzyme catalysing the interconversion of glycerol and dihydroxyacetone, was inactivated on reaction with pyridoxal 5′-phosphate (PLP) and o -phthalaldehyde (OPA). Fluorescence spectra of PLP-modified, sodium borohydride-reduced GlDH indicated the specific modification of ? -amino groups of lysine residues. The extent of inhibition was concentration and time dependent. NAD + and NADH provided complete protection against enzyme inactivation by PLP, indicating the reactive lysine is at or near the coenzyme binding site. Modification of GlDH by the bifunctional reagent OPA, which reacts specifically with proximal ? -NH 2 group of lysines and -SH group of cysteines to form thioisoindole derivatives, inactivated the enzyme. Molecular weight determinations of the modified enzyme indicated the formation of intramolecular thioisoindole formation. Glycerol partially protected the enzyme against OPA inactivation, whereas NAD + was ineffective. These results show that the lysine involved in the OPA reaction is different from the PLP-reactive lysine, which is at or near the coenzyme binding site. DTNB titration showed the presence of only a single cysteine residue per monomer of GlDH. This could be participating with a proximal lysine residue to form a thioisoindole derivative observed as a result of OPA modification.  相似文献   

8.
M Fujioka  Y Takata 《Biochemistry》1981,20(3):468-472
The baker's yeast saccharopine dehydrogenase (EC 1.5.1.7) was inactivated by 2,3-butanedione following pseudo-first-order reaction kinetics. The pseudo-first-order rate constant for inactivation was linearly related to the butanedione concentration, and a value of 7.5 M-1 min-1 was obtained for the second-order rate constant at pH 8.0 and 25 degrees C. Amino acid analysis of the inactivated enzyme revealed that arginine was the only amino acid residue affected. Although as many as eight arginine residues were lost on prolonged incubation with butanedione, only one residue appears to be essential for activity. The modification resulted in the change in Vmax, but not in Km, values for substrates. The inactivation by butanedione was substantially protected by L-leucine, a competitive analogue of substrate lysine, in the presence of reduced nicotinamide adenine dinucleotide (NADH) and alpha-ketoglutarate. Since leucine binds only to the enzyme-NADH-alpha-ketoglutarate complex, the result suggests that an arginine residue located near the binding site for the amino acid substrate is modified. Titration with leucine showed that the reaction of butanedione also took place with the enzyme-NADH-alpha-ketoglutarate-leucine complex more slowly than with the free enzyme. The binding study indicated that the inactivated enzyme still retained the capacity to bind leucine, although the affinity appeared to be somewhat decreased. From these results it is concluded that an arginine residue essential for activity is involved in the catalytic reaction rather than in the binding of the coenzyme and substrates.  相似文献   

9.
Ehrlich ascites carcinoma (EAC) cell glyceraldehyde-3-phosphate dehydrogenase (GA3PD) (EC. 1.2.1.12) was completely inactivated by diethyl pyrocarbonate (DEPC), a fairly specific reagent for histidine residues in the pH range of 6.0-7.5. The rate of inactivation was dependent on pH and followed pseudo-first order reaction kinetics. The difference spectrum of the inactivated and native enzymes showed an increase in the absorption maximum at 242 nm, indicating the modification of histidine residues. Statistical analysis of the residual enzyme activity and the extent of modification indicated modification of one essential histidine residue to be responsible for loss of the catalytic activity of EAC cell GA3PD. DEPC inactivation was protected by substrates, D-glyceraldehyde-3-phosphate and NAD, indicating the presence of essential histidine residue at the substrate-binding region of the active site. Double inhibition studies also provide evidence for the presence of histidine residue at the active site.  相似文献   

10.
Enterobacter aerogenes glycerol dehydrogenase (G1DH EC 1.1.1.6), a tetrameric NAD+ specific enzyme catalysing the interconversion of glycerol and dihydroxyacetone, was inactivated on reaction with pyridoxal 5-phosphate (PLP) and o-phthalaldehyde (OPA). Fluorescence spectra of PLP-modified, sodium borohydride-reduced G1DH indicated the specific modification of epsilon-amino groups of lysine residues. The extent of inhibition was concentration and time dependent. NAD+ and NADH provided complete protection against enzyme inactivation by PLP, indicating the reactive lysine is at or near the coenzyme binding site. Modification of G1DH by the bifunctional reagent OPA, which reacts specifically with proximal epsilon-NH2 group of lysines and -SH group of cysteines to form thioisoindole derivatives, inactivated the enzyme. Molecular weight determinations of the modified enzyme indicated the formation of intramolecular thioisoindole formation. Glycerol partially protected the enzyme against OPA inactivation, whereas NAD+ was ineffective. These results show that the lysine involved in the OPA reaction is different from the PLP-reactive lysine, which is at or near the coenzyme binding site. DTNB titration showed the presence of only a single cysteine residue per monomer of G1DH. This could be participating with a proximal lysine residue to form a thioisoindole derivative observed as a result of OPA modification.  相似文献   

11.
Glyoxalase I ((R)-S-lactoylglutathione methylglyoxal-lyase (isomerizing), EC 4.4.1.5) from monkey intestinal mucosa was purified to homogeneity. The purified enzyme had a molecular weight of 48,000, composed of two apparently identical subunits. Active-site modification was carried out on the purified enzyme in presence and absence of S-hexylglutathione, a reversible competitive inhibitor of glyoxalase I. Modification by tetranitromethane and N-acetylimidazole caused inactivation of the enzyme. Inactivation by N-acetylimidazole was reversible with hydroxylamine treatment, suggesting the importance of tyrosine residues for the activity of the enzyme. The enzyme was inactivated by 2-hydroxy-5-nitrobenzyl bromide, N-bromosuccinimide, 2,4,6-trinitrobenzenesulphonic acid, pyridoxal phosphate and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, indicating the importance of tryptophan, lysine and glutamic acid/aspartic acid residues for the activity of the enzyme. The enzyme was inactivated by diethyl pyrocarbonate and the activity was not restored by hydroxylamine treatment, suggesting that histidine residues may not be important for activity. Modification by N-ethylmaleimide and p-hydroxymercuribenzoate did not affect its activity, indicating that sulphydryl groups may not be important for activity. These studies indicated that the amino acids present in the active site of glyoxalase I from intestinal mucosa which may be important for activity are tyrosine, tryptophan, lysine and glutamic acid/aspartic acid residues.  相似文献   

12.
Based on a structure-assisted sequence alignment we designed 11 focused libraries at residues in the active site of transaldolase B from Escherichia coli and screened them for their ability to synthesize fructose 6-phosphate from dihydroxyacetone and glyceraldehyde 3-phosphate using a newly developed color assay. We found one positive variant exhibiting a replacement of Phe(178) to Tyr. This mutant variant is able not only to transfer a dihydroxyacetone moiety from a ketose donor, fructose 6-phosphate, onto an aldehyde acceptor, erythrose 4-phosphate (14 units/mg), but to use it as a substrate directly in an aldolase reaction (7 units/mg). With a single amino acid replacement the fructose-6-phosphate aldolase activity was increased considerably (>70-fold compared with wild-type). Structural studies of the wild-type and mutant protein suggest that this is due to a different H-bond pattern in the active site leading to a destabilization of the Schiff base intermediate. Furthermore, we show that a homologous replacement has a similar effect in the human transaldolase Taldo1 (aldolase activity, 14 units/mg). We also demonstrate that both enzymes TalB and Taldo1 are recognized by the same polyclonal antibody.  相似文献   

13.
The beta-glucosidase from Schizophyllum commune was purified to homogeneity by a modified procedure that employed Con A-Sepharose. The participation of carboxyl groups in the mechanism of action of the enzyme was delineated through kinetic and chemical modification studies. The rates of beta-glucosidase-catalyzed hydrolysis of p-nitrophenyl-beta-D-glucoside were determined at 27 degrees C and 70 mM ionic strength over the pH range 3.0-8.0. The pH profile gave apparent pK values of 3.3 and 6.9 for the enzyme-substrate complex and 3.3 and 6.6 for the free enzyme. The enzyme is inactivated by Woodward's K reagent and various water-soluble carbodiimides; chemical reagents selective for carboxyl groups. Of these reagents, 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)carbodiimide iodide in the absence of added nucleophile was the most effective and a kinetic analysis of the modification indicated that one molecule of carbodiimide is required to bind to the beta-glucosidase for inactivation. Employing a tritiated derivative of the carbodiimide, 44 carboxyl groups in the enzyme were found to be labelled while the competitive inhibitor deoxynojirimycin protected three residues from modification. Treatment of the enzyme with tetranitromethane resulted in the modification of five tyrosine residues with approx. 28% diminution of enzymic activity. Titration of denatured enzyme with dithiobis(2-nitro-benzoic acid) indicated the absence of free thiol groups. Reaction of the enzyme with diethyl pyrocarbonate resulted in the modification of four histidine residues with the retention of 78% of the original enzymatic activity. The divalent transition metals Cu2+ and Hg2+ were found to be potent inhibitors of the enzyme, binding in an apparent irreversible manner.  相似文献   

14.
A series of chemical modification reactions have been carried out with rabbit pulmonary angiotensin converting enzyme (dipeptidyl carboxypeptidase, EC 3.4.15.1) in order to identify amino acid residues essential for its catalytic activity. The enzyme is rapidly inactivated by nitration with tetranitromethane and by O-acetylation with N-acetylimidazole. Deacylation with hydroxylamine restores activity to the acetylated enzyme, while the inhibitor, β-phenylpropionyl-L-phenylalanine, protects against acetylimidazole inactivation. These results indicate the presence of functional tyrosyl residues at the active site of the enzyme. Reaction with butanedione decreases activity, an effect that is markedly enhanced by the presence of borate, indicating essential arginyl residues. In addition, activity is diminished by the carboxyl reagent, cyclohexylmorpholinoethyl carbodiimide. Thus, the three functional residues long known to be components of the active site of bovine carboxypeptidase A, tyrosyl, arginyl, and glutamyl, have counterparts in the angiotensin converting enzyme. The effects of pyridoxal phosphate and a number of other reagents demonstrate that the converting enzyme also contains an important lysyl residue.  相似文献   

15.
The lysosomal membrane enzyme acetyl-CoA:alpha-glucosaminide N-acetyltransferase catalyzes the transfer of the acetyl group from acetyl-CoA to terminal alpha-linked glucosamine residues of heparan sulfate. The reaction appears to be a transmembrane process: the enzyme is acetylated on the outside of the lysosome, and the acetyl group is transferred across the membrane to the inside of the lysosome where it is used to acetylate glucosamine. To determine the reactive site residues involved in the acetylation reaction, lysosomal membranes were treated with various amino acid modification reagents and assayed for enzyme activity. Although four thiol modification reagents were examined, only one, p-chloromercuribenzoate inactivated the N-acetyltransferase. Thiol modification by p-chloromercuribenzoate did not appear to occur at the active site since inactivation was still observed in the presence of the substrate acetyl-CoA. N-Acetyltransferase could be inactivated by N-bromosuccinimide, even after pretreatment with reagents specific for tyrosine and tryptophan, suggesting that the modified residue is a histidine. Diethyl pyrocarbonate, another histidine modification reagent, could also inactivate the enzyme; this inactivation could be reversed by incubation with hydroxylamine. N-Bromosuccinimide and diethyl pyrocarbonate modifications appear to be at the active site of the enzyme since co-incubation with acetyl-CoA protects the N-acetyltransferase from inactivation. This protection is lost if glucosamine is also present. Pre-acetylated lysosomal membranes are also able to provide protection from N-bromosuccinimide inactivation, providing further evidence for a histidine moiety at the active site and for the existence of an acetyl-enzyme intermediate.  相似文献   

16.
Previous studies from several laboratories have shown that thrombin is inactivated by tetranitromethane with the formation of nitrotyrosine. The inactivation is characterized by an apparently greater loss of fibrinogen-clotting activity than activity toward synthetic ester substrates, suggesting that the residues modified by tetranitromethane are involved in the interaction of thrombin with fibrinogen. This study was designed 1) to determine the effect of solvent conditions on the rate of modification and the stoichiometry of the reaction of tetranitromethane with bovine alpha-thrombin; 2) to identify the residue(s) modified; and 3) to characterize the modified enzyme with respect to its interaction with peptide nitroanilide substrates and fibrinogen. The inactivation of thrombin by tetranitromethane proceeded more rapidly in 50 mM Tris, pH 8.0, than in 50 mM sodium phosphate, 100 mM NaCl, pH 8.0. Approximately 10% fibrinogen-clotting activity remained at maximal inactivation. A study of the effect of tetranitromethane concentration on the rate of inactivation suggested that the loss of activity was the result of the modification of 1 mol of tyrosine/mol of thrombin. A similar result was obtained from the analysis of the extent of inactivation as a function of the extent of protein modification. Structural analysis of the modified protein showed substantial modification at both Tyr71 and Tyr85. Enzyme kinetic studies were performed with the modified protein and a control thrombin with N2-tosylglycylprolylarginine p-nitroanilide. H-D-phenylalanylpipecolylarginine p-nitronailide, and purified bovine fibrinogen. With all three substrates, a substantial decrease in kcat was observed, whereas there was essentially no change in Km. These results suggest that, contrary to previous suggestions, the modification of Tyr71 and Tyr85 in thrombin does not influence the binding of substrates, but rather influences active site reactivity.  相似文献   

17.
S-Adenosylhomocysteinase (EC 3.3.1.1) from rat liver is inactivated by 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate (CMC) in a pseudo-first-order fashion. The rate of inactivation is linearly related to the concentration of the reagent, and a second-order rate constant of 4.94 +/- 0.27 M-1 min-1 is obtained at pH 5.5 and 25 degrees C. The inactivation does not involve change in the quaternary structure of the enzyme nor modification or release of the enzyme-bound NAD. Lack of modification at tyrosine, serine, cysteine, histidine, and lysine residues and the fact that the inactivation is favored at low pH suggest that the inactivation is caused by the modification of a carboxyl group. Statistical analysis of the relationship between the residual enzyme activity and the extent of modification, and comparison of the number of residues modified in the presence and absence of the substrate adenosine show that, among four reactive residues per enzyme subunit, only one residue which reacts more rapidly with the reagent than the rest is critical for activity. The CMC-modified enzyme binds adenosine and S-adenosylhomocysteine and is able to oxidize the 3' hydroxyl of these substrates, but apparently fails to catalyze the abstraction of the 4' proton of adenosine.  相似文献   

18.
Calcium-activated phosphoenolpyruvate carboxykinase fromEscheria coli is not inactivated by a number of sulfhydryl-directed reagents [5,5′-dithiobis(2-nitrobenzoate), iodoacetate, N-ethylmaleimide, N-(1-pyrenyl)maleimide or N-(iodoacetyl)-N′-(5-sulfo-l-naphthylethylenediamine)], unlike phosphoenolpyruvate carboxykinase from other organisms. On the other hand, the enzyme is rapidly inactivated by the arginyl-directed reagents 2,3-butanedione and 1-pyrenylglyoxal. The substrates, ADP plus PEP in the presence of Mn2+, protect the enzyme against inactivation by the diones. Quantitation of pyrenylglyoxal incorporation indicates that complete inactivation correlates with the binding of one inactivator molecule per mole of enzyme. Chemical modification by pyridoxal 5′-phosphate also produces inactivation of the enzyme, and the labeled protein shows a difference spectrum with a peak at 325 nm, characteristic of a pyridoxyl derivative of lysine. The inactivation by this reagent is also prevented by the substrates. Binding stoichiometries of 1.25 and 0.30mol of reagent incorporated per mole of enzyme were found in the absence and presence of substrates, respectively. The results suggest the presence of functional arginyl and lysyl residues in or near the active site of the enzyme, and indicate lack of reactive functional sulfhydryl groups.  相似文献   

19.
In order to identify the essential reactive amino acid residues of 5-enolpyruvoylshikimate-3-phosphate synthase, a target for the nonselective herbicide glyphosphate (N-phosphonomethylglycine), chemical modification studies with o-phthalaldehyde were undertaken. Incubation of the enzyme with the reagent resulted in a time-dependent loss of enzyme activity. The inactivation followed first-order and saturation kinetics with a Kinact of 25 microM and a maximum rate constant of 0.34 min-1. The inactivation was prevented by preincubation of the enzyme with the substrates shikimate 3-phosphate, 5-enolpyruvoylshikimate 3-phosphate, or by a combination of shikimate 3-phosphate plus glyphosate, but not by phosphoenolpyruvate or glyphosate alone. Absorbance and fluorescence spectra studies indicate that complete inactivation of the enzyme resulted from the formation of two isoindole derivatives per molecule of enzyme. Tryptic mapping of the enzyme modified in the absence of shikimate 3-phosphate and glyphosate resulted in the isolation of two peptides which were not found for the enzyme modified in the presence of shikimate 3-phosphate and glyphosate. Analyses of these two peptides indicate that Lys-22 and Lys-340 were the modified sites. The amino acid sequences around these residues are conserved in bacterial, fungal, as well as plant enzymes, suggesting that these regions may constitute part of the enzyme active site.  相似文献   

20.
Chalcone isomerase form soybean is inactivated by treatment with diethyl pyrocarbonate (DEP). The competitive inhibitor 4',4-dihydroxychalcone provides kinetic protection against inactivation by DEP with a binding constant at the site of protection in agreement with its binding constant at the active site. Very high concentrations of the competitive inhibitors 4',4-dihydroxychalcone or morin hydrate offer a 10- to 40-fold maximal protection, suggesting a second slower mechanism for inactivation which cannot be prevented by blockage of the active site. Blockage of the only cysteine residue in chalcone isomerase with p-mercuribenzoate does not affect the rate constant for DEP-dependent inactivation and indicates that the modification of the cysteine residue is not responsible for the activity loss observed in the presence of DEP. Treatment of inactivated enzyme with hydroxylamine does not restore catalytic activity, indicating that the modification of histidine or tyrosine residues is not responsible for the activity loss. All five histidines of chalcone isomerase are modified by DEP at pH 5.7 and ionic strength 1.0 M. The rate constant for the modification of the histidine residues of chalcone isomerase is close to that for the reaction of N-acetyl histidine with DEP, indicating that the histidine residues are quite accessible to the modifying reagent. The rate of histidine modification is the same in native enzyme, in urea-denatured enzyme, and in the presence of a competitive inhibitor. In the presence of the competitive inhibitor morin hydrate, all of the histidine residues of chalcone isomerase can be modified without significant loss in catalytic activity. These results demonstrate that the histidine residues of chalcone isomerase are not essential for catalysis and therefore cannot function as nucleophilic catalysts as previously proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号