共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel oncogene related to c-mil is transduced in chicken neuroretina cells induced to proliferate by infection with an avian lymphomatosis virus. 总被引:7,自引:0,他引:7 下载免费PDF全文
M Marx A Eychne D Laugier C Bchade P Crisanti P Dezle B Pessac G Calothy 《The EMBO journal》1988,7(11):3369-3373
Non-dividing neuroretina cells from chicken embryos are induced to proliferate after a long latency, following infection with Rous associated virus type 1, an avian retrovirus which does not carry a transforming gene. We have isolated from these proliferating cells an acutely mitogenic retrovirus, designated IC10, which contains a novel oncogene. Nucleotide sequencing showed that the IC10 virus has transduced 1101 nucleotides of cellular origin inserted between the gag and env genes of RAV-1. This oncogene, designated v-Rmil, is 70.1% homologous to v-mil. v-Rmil encodes a protein of 40,976 daltons sharing 83.8% homology with the catalytic domain of the v-mil protein. Divergence with the v-mil gene product is observed at the NH2- and COOH-terminal portions of the v-Rmil protein. Restriction analysis of normal chicken DNA indicated that v-Rmil is derived from a cellular gene distinct from c-mil. The c-Rmil gene is transcribed through a major mRNA, greater than 10 kb in length, that is detected at much higher levels in neuroretinas, as compared to other embryonic tissues. 相似文献
2.
Common mechanism of retrovirus activation and transduction of c-mil and c-Rmil in chicken neuroretina cells infected with Rous-associated virus type 1. 下载免费PDF全文
M P Felder A Eychne J V Barnier I Calogeraki G Calothy M Marx 《Journal of virology》1991,65(7):3633-3640
We previously described the isolation of the IC10 retrovirus which transduced the v-Rmil oncogene, a new member of the mil/raf gene family. This virus was generated during serial passaging of Rous-associated virus type 1 (RAV-1) in chicken embryo neuroretina (NR) cells and was selected for its ability to induce proliferation of these nondividing cells. IC10 was isolated after six passages of culture supernatants but was not detected in proliferating NR cells during early virus passages. In this study, we molecularly cloned and sequenced another v-Rmil-containing provirus, designated IC11, from NR cells infected at the third virus passage of the same experiment. Both IC11 and IC10 transduced only the serine/threonine kinase domain of c-Rmil. Comparison of v-Rmil and c-Rmil sequences indicated that amino-terminal truncation is sufficient to activate the mitogenic properties of c-Rmil. IC11 and IC10 have identical 3' ends but differ by their 5' RAV-1-Rmil junctions. The 3' ends of both viruses were generated by recombination between Rmil and env genes, involving partial sequence identity. The 5' RAV-1-Rmil junction of IC11 was formed by a splicing process between the RAV-1 leader and a 37-bp c-Rmil exon located upstream of the kinase domain. NR cells infected with this virus synthesize a unique Rmil protein. IC10 contains most of the gag gene recombined with v-Rmil and encodes a gag-Rmil hybrid protein. Serial passaging of IC11 in NR cells led to the formation of a gag-Rmil-containing retrovirus. These results indicate that IC11 represents an early step in transduction and that this virus further recombined with RAV-1 to generate IC10. They confirm our previously proposed model for the multistep generation of v-mil-transducing retroviruses. Therefore, activation and transduction of c-mil and c-Rmil, in NR cells infected with RAV-1, result from a common mechanism. 相似文献
3.
Molecular and biological properties of c-mil transducing retroviruses generated during passage of Rous-associated virus type 1 in chicken neuroretina cells. 下载免费PDF全文
IC1, IC2, and IC3 are novel c-mil transducing retroviruses generated during serial passaging of Rous-associated virus type 1 (RAV-1) in chicken embryo neuroretina cells. They were isolated by their ability to induce proliferation of these nondividing cells. IC2 and IC3 were generated during early passages of RAV-1 in neuroretina cells, whereas IC1 was isolated after six consecutive passages of virus supernatants. We sequenced the transduced genes and the mil-RAV-1 junctions of the three viruses. The 5' RAV-1-mil junction of IC2 and IC3 was formed by a splicing process between the RAV-1 leader sequence and exon 8 of the c-mil gene. The 5' end of IC1 resulted from homologous recombination between gag and mil sequences. Reconstitution experiments showed that serial passaging of IC2 in neuroretina cells also led to the formation of a gag-mil-containing retrovirus. Therefore, constitution of a U5-leader-delta c-mil-delta RAV-1-U3 virus represents early steps in c-mil transduction by RAV-1. This virus further recombined with RAV-1 to generate a gag-mil-containing virus. The three IC viruses transduced the serine/threonine kinase domain of the cellular gene. Hence, amino-terminal truncation is sufficient to activate the mitogenic property of c-mil. Comparison of the transforming properties of IC2 and IC1 showed that the transduced mil gene, expressed as a unique protein independent of gag sequences, was weakly transforming in avian cells. Acquisition of gag sequences by IC1 not only increased the rate of virus replication but also enhanced the transforming capacity of the virus. 相似文献
4.
Acquisition of new DNA sequences after infection of chicken cells with avian myeloblastosis virus 总被引:7,自引:20,他引:7
DNA-RNA hybridization studies between 70S RNA from avian myeloblastosis virus (AMV) and an excess of DNA from (i) AMV-induced leukemic chicken myeloblasts or (ii) a mixture of normal and of congenitally infected K-137 chicken embryos producing avian leukosis viruses revealed the presence of fast- and slow-hybridizing virus-specific DNA sequences. However, the leukemic cells contained twice the level of AMV-specific DNA sequences observed in normal chicken embryonic cells. The fast-reacting sequences were two to three times more numerous in leukemic DNA than in DNA from the mixed embryos. The slow-reacting sequences had a reiteration frequency of approximately 9 and 6, in the two respective systems. Both the fast- and the slow-reacting DNA sequences in leukemic cells exhibited a higher Tm (2 C) than the respective DNA sequences in normal cells. In normal and leukemic cells the slow hybrid sequences appeared to have a Tm which was 2 C higher than that of the fast hybrid sequences. Individual non-virus-producing chicken embryos, either group-specific antigen positive or negative, contained 40 to 100 copies of the fast sequences and 2 to 6 copies of the slowly hybridizing sequences per cell genome. Normal rat cells did not contain DNA that hybridized with AMV RNA, whereas non-virus-producing rat cells transformed by B-77 avian sarcoma virus contained only the slowly reacting sequences. The results demonstrate that leukemic cells transformed by AMV contain new AMV-specific DNA sequences which were not present before infection. 相似文献
5.
Comparison of an avian osteopetrosis virus with an avian lymphomatosis virus by RNA-DNA hybridization. 下载免费PDF全文
Myeloblastosis-associated virus (MAV)-2(0), a virus which was derived from avian myeloblastosis virus and induced a high incidence of osteopetrosis, was compared with avian lymphomatosis virus 5938, a recent field isolate which induced a high incidence of lymphomatosis. The following information was obtained. (i) MAV-2(0) induced osteopetrosis, nephroblastoma, and a very low incidence of hepatocellular carcinoma. No difference was seen in the oncogenic spectrum of end point and plaque-purified MAV-2(0). (ii) 125I-labeled RNA sequences from MAV-2(0) formed hybrids with DNA extracted from osteopetrotic bone at a rate suggesting five proviral copies per haploid cell genome. The extent of hybridization of MAV-2(0) RNA with DNA from osteopetrotic tissue was more extensive (87%) than was observed in reactions with DNA from uninfected chicken embryos (52%). (iii) Competition of unlabeled viral RNA in hybridization reactions between the radioactive RNA from the two viruses and their respective proviral sequences present in tumor tissues showed that 15 to 20% of the viral sequences detected in these reactions were unshared. In contrast, no differences were detected in competition analyses of RNA sequences from the two viruses detected in DNA of normal chicken cells. (iv) MAV-2(0) 35S RNA was indistinguishable in size from avian lymphomatosis virus 5938 35S RNA by polyacrylamide gel electrophoresis. 相似文献
6.
Induction of proliferation of neuroretina cells by long terminal repeat activation of the carboxy-terminal part of c-mil. 总被引:7,自引:1,他引:7 下载免费PDF全文
C Dozier F Denhez J Coll P Amouyel B Quatannens A Begue D Stehelin S Saule 《Molecular and cellular biology》1987,7(5):1995-1998
Expression of the P100gag-mil protein of avian retrovirus MH2 in cultured chicken embryo neuroretina cells was previously shown to result in the proliferation of normally quiescent cell populations. We show here that long terminal repeat activation of the carboxy terminus of the c-mil gene is sufficient to induce neuroretina cell proliferation. 相似文献
7.
8.
Interspersion of sequences in avian myeloblastosis virus rna that rapidly hybridize with leukemic chicken cell DNA. 下载免费PDF全文
Liquid hybridization of progressively smaller fragments (35S, 27S, 15.5S, 12.5S, and 8S) of poly(A)-selected avian myeloblastosis virus RNA with excess DNA from leukemic chicken myeloblasts revealed that all sizes of RNA contained sequences complementary to both slowly and rapidly hybridizing cellular DNA sequences. Apparently, the RNA sequences which hybridize rapidly with excesses of cellular DNA are not restricted to any one region of the avian myeloblastosis virus 35S RNA. Instead, they appear to be randomly distributed over the entire 35S avian myeloblastosis virus RNA molecule with some positioned within 200 nucleotides of the poly(A) tract at the 3' end of the RNA. 相似文献
9.
Sialic acids (SAs) linked to galactose (Gal) in α2,3- and α2,6-configurations are the receptors for avian and human influenza viruses, respectively. We demonstrate that chicken tracheal ciliated cells express α2,3-linked SA, while goblet cells mainly express α2,6-linked SA. In addition, the plant lectin MAL-II, but not MAA/MAL-I, is bound to the surface of goblet cells, suggesting that SA2,3-linked oligosaccharides with Galβ1-3GalNAc subterminal residues are specifically present on the goblet cells. Moreover, both α2,3- and α2,6-linked SAs are detected on single tracheal basal cells. At a low multiplicity of infection (MOI) avian influenza virus H6N1 is exclusively detected in the ciliated cells, suggesting that the ciliated cell is the major target cell of the H6N1 virus. At a MOI of 1, ciliated, goblet and basal cells are all permissive to the AIV infection. This result clearly elucidates the receptor distribution for the avian influenza virus among chicken tracheal epithelial cells and illustrates a primary cell model for evaluating the cell tropisms of respiratory viruses in poultry. 相似文献
10.
Expression of endogenous avian myeloblastosis virus information in different chicken cells. 总被引:19,自引:8,他引:19 下载免费PDF全文
J H Chen 《Journal of virology》1980,36(1):162-170
Uninfected chicken cells were found to contain endogenous avian myeloblastosis virus (AMV)-specific information. Different tissues from chicken embryos and chickens expressed different amounts of the AMV-specific information. The endogenous AMV-related RNA was most abundant in bone marrow cells, which contained about 20 copies per cell. About 5 to 10 copies of AMV endogenous RNA per cell were found in embryonic yolk sac cells and bursa cells. The spleen, muscle, liver, and kidney cells of chickens and the fibroblasts of chicken embryos contained about two copies per cell. The amounts of AMV endogenous RNA in bone marrow, yolk sac, and bursa varied with age. From 19-day-old embryos to 2-week-old chickens, the bone marrow contained 20 copies of AMV RNA per cell. Bone marrow cells from 2-year-old chickens contained five copies per cell. Yolk sac cells of 10-day-old embryos and 1-day-old chickens were found to contain two copies per cell, whereas in 15- to 17-day-old embryos, these cells contained 5 to 10 copies. These results indicate that the level of endogenous AMV expression correlates with the development of granulopoiesis of the chicken hemopoietic system. The results of experiments on the thermostability of RNA-DNA hybrids indicated that the endogenous AMV RNA is closely related to viral AMV RNA. The expression of endogenous AMV information is independent of the activity of the chick helper factor. This endogenous AMV information is expressed as 20 to 21S RNA in both bone marrow and yolk sac cells. 相似文献
11.
Biao Chen Weiling Pan Liangyu Zhang Jing Liu Hongjia Ouyang Qinghua Nie Xiquan Zhang 《Molecular biology reports》2014,41(10):6519-6524
As a kind of binding protein, the type 1 Na+/H+ exchanger (NHE1) is a receptor for the highly pathogenic Avian leukosis viruses-J subgroup (ALV-J) in chicken. In order to investigate the potential effect of chicken NHE1 gene on leukosis, we compared its expression between ALV-J-affected and -unaffected chicken, screened variations across the whole gene, and then performed association analysis with ALV-J affected/unaffected trait in three un-related chicken populations. We found that the NHE1 gene expressed in four immune tissues including spleen, bursa fabricius, liver, and thymus, and its expression was significantly up-regulated in liver and thymus of ALV-J-affected chickens (with leukosis phenotype) compared to -unaffected ones (ALV-J-negative controls). Thirty-six single nucleotide polymorphisms (SNP) were identified in a 6,105 bp region of the chicken NHE1 gene, giving rise to every 170 bp per SNP. Two SNP of g.4405A>G and g.5886C>G were genotyped with PCR-RFLP method. Results showed that g.4405A>G was significantly associated (P < 0.05) with ALV-J infection in all of the three chicken populations, including White Recessive Rock (WRR), Dwarf Yellow (DY) and Shiki Yellow (SY), while g.5886C>G was significantly associated (P < 0.05) with ALV-J infection in SY. These results indicated that the NHE1 gene was related to ALV-J infection in chicken. 相似文献
12.
Molecular cloning of the avian myelocytomatosis virus genome and recovery of infectious virus by transfection of chicken cells. 总被引:30,自引:24,他引:30 下载免费PDF全文
The avian retrovirus myelocytomatosis virus 19 (MCV) possesses an interesting diversity of oncogenic potentials, but the virus has proven difficult to study because of its inability to replicate without the assistance of a helper virus. We have therefore isolated and amplified the genome of MCV by molecular cloning in a procaryotic vector. The topography of the cloned DNA was explored by the use of restriction endonucleases and radioactive complementary DNAs representing specific domains in avian retrovirus genomes. The cloned DNA appeared to be an authentic representation of the MCV genome: the size and genetic topography of the DNA were comparable to those of MCV, and transfection of the cloned DNA into chicken cells (in company with the DNA of a suitable helper virus) gave rise to virus with the genome and transforming potentials of MCV. The availability of cloned MCV DNA should facilitate a variety of genetic and biochemical manipulations directed at elucidating the mechanism of oncogenesis by MCV. 相似文献
13.
14.
Embryonic infection with the endogenous avian leukosis virus Rous-associated virus-0 alters responses to exogenous avian leukosis virus infection. 总被引:1,自引:1,他引:1 下载免费PDF全文
We inoculated susceptible chicken embryos with the endogenous avian leukosis virus Rous-associated virus-0 (RAV-0) on day 6 of incubation. At 1 week after hatching, RAV-0-infected and control chickens were inoculated with either RAV-1 or RAV-2, exogenous viruses belonging to subgroups A and B, respectively. The chickens injected with RAV-0 as embryos remained viremic with exogenous virus longer and either failed to develop type-specific humoral immunity to exogenous virus or developed it later than the control chickens not inoculated with RAV-0. The RAV-0-injected chickens also developed neoplasms at a much higher frequency than did the control chickens. We suggest that the lower immune responses of the RAV-0-injected chickens were due to an immunological tolerance to envelope group-specific glycoproteins shared among endogenous and exogenous viruses. 相似文献
15.
Respiratory syncytial virus (RSV) preferentially infects airway epithelial cells,which might be responsible for susceptibility to asthma; however, the underlying mechanism is not clear. This study determined the activation of lymphocytes and drift of helper T (Th) subsets induced by RSV-infected human bronchial epithelial cells (HBECs) in vitro. HBECs had prolonged infection with RSV, and lymphocytes isolated from human peripheral blood were co-cultured with RSV-infected HBECs. Four groups were established, as follows: lymphocytes (group L); lymphocytes infected with RSV (group RL); co-culture of lymphocytes with non-infected HBECs (group HL); and co-culture of lymphocytes with infected HBECs (group HRL). After co-culture with HBECs for 24 hours, lymphocytes were collected and the following were determined in the 4 groups: cell cycle status; apoptosis rate; and concentrations of IL-4, IFN-γ, and IL-17 in the supernatants. Cell cycle analysis for lymphocytes showed a significant increase in S phase cells, a decrease in G1 phase cells, and a higher apoptosis rate in group HRL compared with the other three groups. In group HRL, the levels of IL-4, IFN-γ, and IL-17 in supernatants were also higher than the other three groups. For further study, lymphocytes were individually treated with supernatants from non-infected and RSV-infected HBECs for 24 h. We showed that supernatants from RSV-infected HBECs induced the differentiation of Th2 and Th17 subsets, and suppressed the differentiation of Treg subsets. Our results showed that HBECs with prolonged RSV infection can induce lymphocyte proliferation and apoptosis, and enhance the release of cytokines by lymphocytes. Moreover, subset drift might be caused by RSV-infected HBECs. 相似文献
16.
17.
18.
19.
Overexpression of A-myb induces basic fibroblast growth factor-dependent proliferation of chicken neuroretina cells. 下载免费PDF全文
A-Myb behaves similarly to c-Myb in chicken neuroretina cells in its ability to induce fibroblast-like differentiation, to promote growth in the presence of basic fibroblast growth factor (bFGF), and to induce Pax-6 and mim-1 expression. The one difference between c-Myb and A-Myb in these cells is that the former but not the latter protein causes colony formation in soft agar in the presence of bFGF. 相似文献
20.
Shirata N Kudoh A Daikoku T Tatsumi Y Fujita M Kiyono T Sugaya Y Isomura H Ishizaki K Tsurumi T 《The Journal of biological chemistry》2005,280(34):30336-30341
Eukaryotic cells are equipped with machinery to monitor and repair damaged DNA. Herpes simplex virus (HSV) DNA replication occurs at discrete sites in nuclei, the replication compartment, where viral replication proteins cluster and synthesize a large amount of viral DNA. In the present study, HSV infection was found to elicit a cellular DNA damage response, with activation of the ataxia-telangiectasia-mutated (ATM) signal transduction pathway, as observed by autophosphorylation of ATM and phosphorylation of multiple downstream targets including Nbs1, Chk2, and p53, while infection with a UV-inactivated virus or with a replication-defective virus did not. Activated ATM and the DNA damage sensor MRN complex composed of Mre11, Rad50, and Nbs1 were recruited and retained at sites of viral DNA replication, probably recognizing newly synthesized viral DNAs as abnormal DNA structures. These events were not observed in ATM-deficient cells, indicating ATM dependence. In Nbs1-deficient cells, HSV infection induced an ATM DNA damage response that was delayed, suggesting a functional MRN complex requirement for efficient ATM activation. However, ATM silencing had no effect on viral replication in 293T cells. Our data open up an interesting question of how the virus is able to complete its replication, although host cells activate ATM checkpoint signaling in response to the HSV infection. 相似文献