首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sonic hedgehog is involved in eye field separation along the proximodistal axis. We show that Hh signalling continues to be important in defining aspects of the proximodistal axis as the optic vesicle and optic cup mature. We show that two other Hedgehog proteins, Banded hedgehog and Cephalic hedgehog, related to the mouse Indian hedgehog and Desert hedgehog, respectively, are strongly expressed in the central retinal pigment epithelium but excluded from the peripheral pigment epithelium surrounding the ciliary marginal zone. By contrast, downstream components of the Hedgehog signalling pathway, Gli2, Gli3 and X-Smoothened, are expressed in this narrow peripheral epithelium. We show that this zone contains cells that are in the proliferative state. This equivalent region in the adult mammalian eye, the pigmented ciliary epithelium, has been identified as a zone in which retinal stem cells reside. These data, combined with double labelling and the use of other retinal pigment epithelium markers, show that the retinal pigment epithelium of tadpole embryos has a molecularly distinct peripheral to central axis. In addition, Gli2, Gli3 and X-Smoothened are also expressed in the neural retina, in the most peripheral region of the ciliary marginal zone, where retinal stem cells are found in Xenopus, suggesting that they are good markers for retinal stem cells. To test the role of the Hedgehog pathway at different stages of retinogenesis, we activated the pathway by injecting a dominant-negative form of PKA or blocking it by treating embryos with cyclopamine. Embryos injected or treated at early stages display clear proximodistal defects in the retina. Interestingly, the main phenotype of embryos treated with cyclopamine at late stages is a severe defect in RPE differentiation. This study thus provides new insights into the role of Hedgehog signalling in the formation of the proximodistal axis of the eye and the differentiation of retinal pigment epithelium.  相似文献   

2.
3.
4.
5.
Dorsoventral patterning of the neural tube has a crucial role in shaping the functional organization of the CNS. It is well established that hedgehog signalling plays a key role in specifying ventral cell types throughout the neuroectoderm, and major progress has been made in elucidating how hedgehog signalling works in this ventral specification. In addition, other molecular pathways, including nodal, retinoic acid and fibroblast growth factor signalling, have been identified as important molecular cues for ventral patterning of the spinal cord, telencephalon and eye. Here, we discuss recent advances in this field, highlighting the emerging interplay of these signalling pathways in the molecular specification of ventral patterning at different rostrocaudal levels of the CNS.  相似文献   

6.
The hedgehog signalling pathway is one of the key regulators of metazoan development, and it plays an important role in the regulation of a variety of developmental and physiological processes. But it is aberrantly activated in many human diseases, including osteoarthritis (OA). In this study, we have reviewed the association of hedgehog signalling pathway in the development and progression of OA and evaluated the efforts to target this pathway for the prevention of OA. Usually in OA, activation of hedgehog induces up-regulation of the expression of hypertrophic markers, including type X collagen, increases production of nitric oxide and prostaglandin E2, several matrix-degrading enzymes including matrix metalloproteinase and a disintegrin and metalloproteinase with thrombospondin motifs in human knee joint cartilage leading to cartilage degeneration, and thus contributes in OA. Targeting hedgehog signalling might be a viable strategy to prevent or treat OA. Chemical inhibitors of hedgehog signalling is promising, but they cause severe side effects. Knockdown of HH gene is not an option for OA treatment in humans because it is not possible to delete HH in larger animals. Efficient knockdown of HH achieved by local delivery of small interfering RNA in future studies utilizing large animal OA models might be a more efficient approach for the prevention of OA. However, it remains a major problem to develop one single scaffold due to the different physiological functions of cartilage and subchondral bones possess. More studies are necessary to identify selective inhibitors for efficiently targeting the hedgehog pathway in clinical conditions.  相似文献   

7.
Currently, few factors have been identified that provide the inductive signals necessary to transform the simple otic placode into the complex asymmetric structure of the adult vertebrate inner ear. We provide evidence that Hedgehog signalling from ventral midline structures acts directly on the zebrafish otic vesicle to induce posterior otic identity. We demonstrate that two strong Hedgehog pathway mutants, chameleon (con(tf18b)) and slow muscle omitted (smu(b641)) exhibit a striking partial mirror image duplication of anterior otic structures, concomitant with a loss of posterior otic domains. These effects can be phenocopied by overexpression of patched1 mRNA to reduce Hedgehog signalling. Ectopic activation of the Hedgehog pathway, by injection of sonic hedgehog or dominant-negative protein kinase A RNA, has the reverse effect: ears lose anterior otic structures and show a mirror image duplication of posterior regions. By using double mutants and antisense morpholino analysis, we also show that both Sonic hedgehog and Tiggy-winkle hedgehog are involved in anteroposterior patterning of the zebrafish otic vesicle.  相似文献   

8.
We analysed the role of Notch signalling during the specification of the dorsal midline in Xenopus embryos. By activating or blocking the pathway we found that Notch expands the floor plate domain of sonic hedgehog and pintallavis and represses the notochordal markers chordin and brachyury, with a concomitant reduction of the notochord size. We propose that within a population of the early organiser with equivalent potential to develop either as notochord or floor plate, Notch activation favours floor plate development at the expense of the notochord, preferentially before mid gastrula. We present evidence that sonic hedgehog down-regulates chordin, suggesting that secreted Sonic hedgehog may be involved or reinforcing the cell-fate switch executed by Notch. We also show that Notch signalling requires Presenilin to modulate this switch.  相似文献   

9.
During development, spinal cord oligodendrocyte precursors (OPCs) originate from the ventral, but not dorsal, neuroepithelium. Sonic hedgehog (SHH) has crucial effects on oligodendrocyte production in the ventral region of the spinal cord; however, less is known regarding SHH signalling and oligodendrocyte generation from neural stem cells (NSCs). We show that NSCs isolated from the dorsal spinal cord can generate oligodendrocytes following FGF2 treatment, a MAP kinase dependent phenomenon that is associated with induction of the obligate oligogenic gene Olig2. Cyclopamine, a potent inhibitor of hedgehog signalling, did not block the formation of oligodendrocytes from FGF2-treated neurosphere cultures. Furthermore, neurospheres generated from SHH null mice also produced oligodendrocytes, even in the presence of cyclopamine. These findings are compatible with the idea of a hedgehog independent pathway for oligodendrocyte generation from neural stem cells.  相似文献   

10.
The genetic basis of mammalian neurulation   总被引:2,自引:0,他引:2  
More than 80 mutant mouse genes disrupt neurulation and allow an in-depth analysis of the underlying developmental mechanisms. Although many of the genetic mutants have been studied in only rudimentary detail, several molecular pathways can already be identified as crucial for normal neurulation. These include the planar cell-polarity pathway, which is required for the initiation of neural tube closure, and the sonic hedgehog signalling pathway that regulates neural plate bending. Mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents neural tube defects, and to develop new therapies for folate-resistant defects.  相似文献   

11.
Many studies have shown a role of retinoid signalling in neurite outgrowth in vitro, and that the retinoic acid receptor (RAR) beta2 is critical for this process. We show here that RARbeta2 is expressed predominantly in dorsal root ganglia (DRG) neuronal subtypes that express neurofilament (NF) 200 and calcitonin gene-related peptide (CGRP), and that these neurons extend neurites in response to RA. We demonstrate that retinoid signalling has a role in neurite outgrowth in vivo, by showing that in a peripheral nerve crush model there is less neurite outgrowth from RARbeta null DRG compared to wild-type. We identify sonic hedgehog (Shh) as a downstream target of the RARbeta2 signalling pathway as it is expressed in the injured DRG of wild-type but not RARbeta null mice. This regulation is direct as when RARbeta2 is overexpressed in adult motoneurons Shh is induced in them. Finally we show that Shh alone cannot induce neurite outgrowth but potentiates RARbeta2 signalling in this process.  相似文献   

12.
 The hedgehog family of intercellular signalling molecules have essential functions in patterning both Drosophila and vertebrate embryos. Drosophila has a single hedgehog gene, while vertebrates have evolved at least three types of hedgehog genes (the Sonic, Desert and Indian types) by duplication and divergence of a single ancestral gene. Vertebrate Sonic-type genes typically show conserved expression in the notochord and floor plate, while Desert- and Indian-type genes have different patterns of expression in vertebrates from different classes. To determine the ancestral role of hedgehog in vertebrates, I have characterised the hedgehog gene family in amphioxus. Amphioxus is the closest living relative of the vertebrates and develops a similar body plan, including a dorsal neural tube and notochord. A single amphioxus hedgehog gene, AmphiHh, was identified and is probably the only hedgehog family member in amphioxus, showing the duplication of hedgehog genes to be specific to the vertebrate lineage. AmphiHh expression was detected in the notochord and ventral neural tube, tissues that express Sonic-type genes in vertebrates. This shows that amphioxus probably patterns its ventral neural tube using a molecular pathway conserved with vertebrates. AmphiHh was also expressed on the left side of the pharyngeal endoderm, reminiscent of the left-sided expression of Sonic hedgehog in chick embryos which forms part of a pathway controlling left/right asymmetric development. These data show that notochord, floor plate and possibly left/right asymmetric expression are ancestral sites of hedgehog expression in vertebrates and amphioxus. In vertebrates, all these features have been retained by Sonic-type genes. This may have freed Desert-type and Indian-type hedgehog genes from selective constraint, allowing them to diverge and take on new roles in different vertebrate taxa. Received: 20 July 1998 / Accepted: 23 September 1998  相似文献   

13.
The kinesin protein Kif7 has been recognized as an integral component of hedgehog signalling. Aberrant activation of hedgehog signalling has been implicated in many human solid tumours. Gestational trophoblastic disease includes frankly malignant choriocarcinoma and potentially malignant hydatidiform mole. Here we investigated the hedgehog signalling components expression profiles in gestational trophoblastic disease. Downregulation of Gli1, Gli2, Gli3 and Kif7 was demonstrated in clinical samples of choriocarcinoma and hydatidiform moles as well as choriocarcinoma cell lines when compared with normal placentas. Ectopic expression of Kif7 in two choriocarcinoma cell lines JAR and JEG-3 led to a decrease in cell growth and increase in apoptosis demonstrated by MTT and TUNEL assays, respectively. Overexpression of Kif7 also led to suppressed cell migration through transwell assay. In contrast, knocking down Kif7 in HTR-8/SVneo, an immortalized trophoblast cell line, increased cell number over time and increased the migratory ability of the cells. Taken together, Kif7 may contribute to pathogenesis of gestational trophoblastic disease through enhancing survival and promoting dissemination of trophoblasts.  相似文献   

14.
Smoothened is a key receptor of the hedgehog pathway, but the roles of Smoothened in cardiac development remain incompletely understood. In this study, we found that the conditional knockout of Smoothened from the mesoderm impaired the development of the venous pole of the heart and resulted in hypoplasia of the atrium/inflow tract (IFT) and a low heart rate. The blockage of Smoothened led to reduced expression of genes critical for sinoatrial node (SAN) development in the IFT. In a cardiac cell culture model, we identified a Gli2–Tbx5–Hcn4 pathway that controls SAN development. In the mutant embryos, the endocardial-to-mesenchymal transition (EndMT) in the atrioventricular cushion failed, and Bmp signalling was downregulated. The addition of Bmp2 rescued the EndMT in mutant explant cultures. Furthermore, we analysed Gli2+ scRNAseq and Tbx5−/− RNAseq data and explored the potential genes downstream of hedgehog signalling in posterior second heart field derivatives. In conclusion, our study reveals that Smoothened-mediated hedgehog signalling controls posterior cardiac progenitor commitment, which suggests that the mutation of Smoothened might be involved in the aetiology of congenital heart diseases related to the cardiac conduction system and heart valves.  相似文献   

15.
In Drosophila, members of the Frizzled family of tissue-polarity genes encode proteins that appear to function as cell-surface receptors for Wnts. The Frizzled genes belong to the seven transmembrane class of receptors (7TMR) and have on their extracellular region a cysteine-rich domain that has been implicated as the Wnt binding domain. This region has a characteristic spacing of ten cysteines, which has also been identified in FrzB (a secreted antagonist of Wnt signaling) and Smoothened (another 7TMR, which is involved in the hedgehog signalling pathway). We have identified, using BLAST, sequence similarity between the cysteine-rich domain of Frizzled and several receptor tyrosine kinases, which have roles in development. These include the muscle-specific receptor tyrosine kinase (MuSK), the neuronal specific kinase (NSK2), and ROR1 and ROR2. At present, the ligands for these developmental tyrosine kinases are unknown. Our results suggest that Wnt-like ligands may bind to these developmental tyrosine kinases  相似文献   

16.
In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases.  相似文献   

17.
18.
Microenvironmental hypoxia-mediated drug resistance is responsible for the failure of cancer therapy. To date, the role of the hedgehog pathway in resistance to temozolomide (TMZ) under hypoxia has not been investigated. In this study, we discovered that the increasing hypoxia-inducible factor 1α (HIF-1α) activated the hedgehog pathway in hypoxic microenvironment by promoting autocrine secretion of sonic hedgehog protein (Shh), and then upregulating transfer of Gli1 to the nucleus, finally contributed to TMZ resistance in glioma cells. Oroxylin A (C16H12O5), a bioactive flavonoid, could induce HIF-1α degradation via prolyl-hydroxylases–VHL signaling pathway, resulting in the inactivation of the hedgehog. Besides, oroxylin A increased the expression of Sufu, which is a negative regulator of Gli1. By this mechanism, oroxylin A sensitized TMZ on glioma cells. U251 intracranial transplantation model and GL261 xenograft model were used to confirm the reversal effects of oroxylin A in vivo. In conclusion, our results demonstrated that HIF-1α/hedgehog pathway conferred TMZ resistance under hypoxia, and oroxylin A was capable of increasing the sensitivity of TMZ on glioma cells in vitro and in vivo by inhibiting HIF-1α/hedgehog pathway and depressing the activation of Gli1 directly.  相似文献   

19.
Hedgehog-interacting protein (Hhip) is a novel regulatory component in the vertebrate hedgehog-signalling pathway. The murine Hhip encodes a type I TM protein that attenuates hedgehog signalling by binding all three mammalian hedgehog proteins. Here we describe the cloning and characterisation of the homologous human hedgehog-interacting protein gene (HHIP). HHIP comprises 13 exons and spans >91kb encoding a protein of 700 aa which shares 94% sequence iden- tity with mouse Hhip. HHIP maps to chromosome 4q31.21--> q31.3. Additionally, we have mapped murine Hhip to chromosome 8.  相似文献   

20.
In the developing zebrafish retina, neurogenesis is initiated in cells adjacent to the optic stalk and progresses to the entire neural retina. It has been reported that hedgehog (Hh) signalling mediates the progression of the differentiation of retinal ganglion cells (RGCs) in zebrafish. However, the progression of neurogenesis seems to be only mildly delayed by genetic or chemical blockade of the Hh signalling pathway. Here, we show that cAMP-dependent protein kinase (PKA) effectively inhibits the progression of retinal neurogenesis in zebrafish. Almost all retinal cells continue to proliferate when PKA is activated, suggesting that PKA inhibits the cell-cycle exit of retinoblasts. A cyclin-dependent kinase (cdk) inhibitor p27 inhibits the PKA-induced proliferation, suggesting that PKA functions upstream of cyclins and cdk inhibitors. Activation of the Wnt signalling pathway induces the hyperproliferation of retinal cells in zebrafish. The blockade of Wnt signalling inhibits the PKA-induced proliferation, but the activation of Wnt signalling promotes proliferation even in the absence of PKA activity. These observations suggest that PKA inhibits exit from the Wnt-mediated cell cycle rather than stimulates Wnt-mediated cell-cycle progression. PKA is an inhibitor of Hh signalling, and Hh signalling molecule morphants show severe defects in cell-cycle exit of retinoblasts. Together, these data suggest that Hh acts as a short-range signal to induce the cell-cycle exit of retinoblasts. The pulse inhibition of Hh signalling revealed that Hh signalling regulates at least two distinct steps of RGC differentiation: the cell-cycle exit of retinoblasts and RGC maturation. This dual requirement of Hh signalling in RGC differentiation implies that the regulation of a neurogenic wave is more complex in the zebrafish retina than in the Drosophila eye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号