首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the development of a system for generating vesicular stomatitis virus (VSV) from plasmid DNAs, our laboratory has reported the expression of several different glycoproteins from recombinant VSVs. In one of these studies, high-level expression of an influenza virus hemagglutinin (HA) from a recombinant VSV-HA and efficient incorporation of the HA protein into the virions was reported (E. Kretzschmar, L. Buonocore, M. J. Schnell, and J. K. Rose, J. Virol. 71:5982–5989, 1997). We report here that VSV-HA is an effective intranasal vaccine vector that raises high levels of neutralizing antibody to influenza virus and completely protects mice from bronchial pneumonia caused by challenge with a lethal dose of influenza A virus. Additionally, these recombinant VSVs are less pathogenic than wild-type VSV (serotype Indiana). This vector-associated pathogenicity was subsequently eliminated through introduction of specific attenuating deletions. These live attenuated recombinant VSVs have great potential as vaccine vectors.  相似文献   

2.
Highly pathogenic avian influenza viruses (HPAIV) of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV) vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA) was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×108 infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA) by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade). Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.  相似文献   

3.
Experimental vaccines based on recombinant vesicular stomatitis viruses (VSV) expressing foreign viral proteins are protective in several animal disease models. Although these attenuated viruses are nonpathogenic in nonhuman primates when given by nasal, oral, or intramuscular routes, they are pathogenic in mice when given intranasally, and further vector attenuation may be required before human trials with VSV-based vectors can begin. Mutations truncating the VSV glycoprotein (G) cytoplasmic domain from 29 to 9 or 1 amino acid (designated CT9 or CT1, respectively) were shown previously to attenuate VSV growth in cell culture and pathogenesis in mice. Here we show that VSV recombinants carrying either the CT1 or CT9 deletion and expressing the human immunodeficiency virus (HIV) Env protein are nonpathogenic in mice, even when given by the intranasal route. We then carried out a detailed analysis of the CD8+ T-cell responses, including in vivo cytotoxic T-cell activity, induced by these vectors. When given by either the intranasal or intraperitoneal route, the VSV-CT9 vector expressing HIV Env elicited primary and memory CD8+ T-cell responses to Env equivalent to those elicited by recombinant wild-type VSV expressing Env. The VSV-CT1 vector also induced potent CD8+ T-cell responses after intraperitoneal vaccination, but was less effective when given by the intranasal route. The VSV-CT1 vector was also substantially less effective than the VSV-CT9 or wild-type vector at inducing antibody to Env. The VSV-CT9 vector appears ideal because of its lack of pathogenesis, propagation to high titers in vitro, and stimulation of strong cellular and humoral immune responses.  相似文献   

4.
通过RT-PCR扩增流行性感冒(流感)病毒HA基因,克隆至腺病毒穿梭载体pAd Track-MV,该重组质粒与腺病毒DNA共转化E.coli BJ5183,通过细菌内同源重组获得重组腺病毒DNA,将其转染293细胞获得重组腺病毒。PCR证实HA基因已整合至腺病毒基因组中,Western blot结果检测到重组病毒感染293细胞中HA的表达。重组病毒经滴鼻和灌胃两种途径免疫小鼠,结果2次免疫后滴鼻组和灌胃组均产生明显的免疫应答,血清IgG抗体滴度分别为1:10000和1:1000。除血清IgG外,还在肺灌洗液中检测到分泌型IgA。滴鼻组的免疫效果强于灌胃组。经小剂量攻毒实验显示,重组腺病毒保护率为100%。该文成功构建了表达流感病毒HA基因的非复制型重组腺病毒,重组病毒免疫小鼠可产生较好的免疫效果。  相似文献   

5.
A recombinant baculovirus expressing the hemagglutinin gene of the influenza virus, A/PR/8/34 (H1N1), under the control of the chicken beta-actin promoter, was constructed. To determine the induction of protective immunity in vivo, mice were inoculated with the recombinant baculovirus by intramuscular, intradermal, i.p., and intranasal routes and then were challenged with a lethal dose of the influenza virus. Intramuscular or i.p. immunization with the recombinant baculovirus elicited higher titers of antihemagglutinin Ab than intradermal or intranasal administration. However, protection from a lethal challenge of the influenza virus was only achieved by intranasal immunization of the recombinant baculovirus. Surprisingly, sufficient protection from the lethal influenza challenge was also observed in mice inoculated intranasally with a wild-type baculovirus, as evaluated by reductions in the virus titer, inflammatory cytokine production, and pulmonary consolidations. These results indicate that intranasal inoculation with a wild-type baculovirus induces a strong innate immune response, which protects mice from a lethal challenge of influenza virus.  相似文献   

6.
Recombinant Newcastle Disease Virus as a Vaccine Vector   总被引:25,自引:0,他引:25       下载免费PDF全文
A complete cDNA clone of the Newcastle disease virus (NDV) vaccine strain Hitchner B1 was constructed, and infectious recombinant virus expressing an influenza virus hemagglutinin was generated by reverse genetics. The rescued virus induces a strong humoral antibody response against influenza virus and provides complete protection against a lethal dose of influenza virus challenge in mice, demonstrating the potential of recombinant NDV as a vaccine vector.  相似文献   

7.
New approaches for vaccination to prevent influenza virus infection are needed. Emerging viruses, such as the H5N1 highly pathogenic avian influenza (HPAI) virus, pose not only pandemic threats but also challenges in vaccine development and production. Parainfluenza virus 5 (PIV5) is an appealing vector for vaccine development, and we have previously shown that intranasal immunization with PIV5 expressing the hemagglutinin from influenza virus was protective against influenza virus challenge (S. M. Tompkins, Y. Lin, G. P. Leser, K. A. Kramer, D. L. Haas, E. W. Howerth, J. Xu, M. J. Kennett, J. E. Durbin, R. A. Tripp, R. A. Lamb, and B. He, Virology 362:139–150, 2007). While intranasal immunization is an appealing approach, PIV5 may have the potential to be utilized in other formats, prompting us to test the efficacy of rPIV5-H5, which encodes the HA from H5N1 HPAI virus, in different vaccination schemes. In the BALB/c mouse model, a single intramuscular or intranasal immunization with a live rPIV5-H5 (ZL46) rapidly induced robust neutralizing serum antibody responses and protected against HPAI challenge, although mucosal IgA responses primed by intranasal immunization more effectively controlled virus replication in the lung. The rPIV5-H5 vaccine incorporated the H5 HA into the virion, so we tested the efficacy of an inactivated form of the vaccine. Inactivated rPIV5-H5 primed neutralizing serum antibody responses and controlled H5N1 virus replication; however, similar to other H5 antigen vaccines, it required a booster immunization to prime protective immune responses. Taken together, these results suggest that rPIV5-HA vaccines and H5-specific vaccines in particular can be utilized in multiple formats and by multiple routes of administration. This could avoid potential contraindications based on intranasal administration alone and provide opportunities for broader applications with the use of a single vaccine vector.  相似文献   

8.
The recent emergence of highly pathogenic avian influenza virus (HPAI) strains in poultry and their subsequent transmission to humans in Southeast Asia have raised concerns about the potential pandemic spread of lethal disease. In this paper we describe the development and testing of an adenovirus-based influenza A virus vaccine directed against the hemagglutinin (HA) protein of the A/Vietnam/1203/2004 (H5N1) (VN/1203/04) strain isolated during the lethal human outbreak in Vietnam from 2003 to 2005. We expressed different portions of HA from a recombinant replication-incompetent adenoviral vector, achieving vaccine production within 36 days of acquiring the virus sequence. BALB/c mice were immunized with a prime-boost vaccine and exposed to a lethal intranasal dose of VN/1203/04 H5N1 virus 70 days later. Vaccination induced both HA-specific antibodies and cellular immunity likely to provide heterotypic immunity. Mice vaccinated with full-length HA were fully protected from challenge with VN/1203/04. We next evaluated the efficacy of adenovirus-based vaccination in domestic chickens, given the critical role of fowl species in the spread of HPAI worldwide. A single subcutaneous immunization completely protected chickens from an intranasal challenge 21 days later with VN/1203/04, which proved lethal to all control-vaccinated chickens within 2 days. These data indicate that the rapid production and subsequent administration of recombinant adenovirus-based vaccines to both birds and high-risk individuals in the face of an outbreak may serve to control the pandemic spread of lethal avian influenza.  相似文献   

9.
Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus) has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP) and matrix 1 (M1). We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines.  相似文献   

10.
Foreign glycoproteins expressed in recombinant vesicular stomatitis virus (VSV) can elicit specific and protective immunity in the mouse model. We have previously demonstrated the expression of respiratory syncytial virus (RSV) G (attachment) and F (fusion) glycoprotein genes in recombinant VSV. In this study, we demonstrate the expression of RSV F and G glycoproteins in attenuated, nonpropagating VSVs which lack the VSV G gene (VSVDeltaG) and the incorporation of these RSV proteins into recombinant virions. We also show that intranasal vaccination of mice with nondefective VSV recombinants expressing RSV G (VSV-RSV G) or RSV F (VSV-RSV F) elicited RSV-specific antibodies in serum (by enzyme-linked immunosorbent assay [ELISA]) as well as neutralizing antibodies to RSV and afford complete protection against RSV challenge. In contrast, VSVDeltaG-RSV F induced detectable serum antibodies to RSV by ELISA, but no detectable neutralizing antibodies, yet it still protected from RSV challenge. VSVDeltaG-RSV G failed to induce any detectable serum (by ELISA) or neutralizing antibodies and failed to protect from RSV challenge. The attenuated, nonpropagating VSVDeltaG-RSV F is a particularly attractive candidate for a live attenuated recombinant RSV vaccine.  相似文献   

11.
We generated an attenuated, recombinant vesicular stomatitis virus (VSV) expressing high levels of the cottontail rabbit papillomavirus (CRPV) L1 protein from an upstream site in the VSV genome. Rabbits vaccinated once with this VSV-L1 recombinant produced high levels of anti-L1 antibody and were completely protected against papilloma formation after challenge with CRPV. In contrast, animals vaccinated only once with a VSV vector expressing lower levels of L1 from a downstream site in the VSV genome generated lower levels of L1 antibody and demonstrated only incomplete protection from papilloma formation after challenge. We conclude that the level of L1 protein expression is critical in generating complete immunity with a single-dose vaccine.  相似文献   

12.
Andes virus (ANDV) is a highly pathogenic South American hantavirus that causes hantavirus pulmonary syndrome (HPS). A high case fatality rate, the potential for human-to-human transmission, the capacity to infect via aerosolization, and the absence of effective therapies make it imperative that a safe, fast-acting, and effective ANDV vaccine be developed. We generated and characterized a recombinant vesicular stomatitis virus (VSV) vector expressing the ANDV surface glycoprotein precursor (VSVΔG/ANDVGPC) as a possible vaccine candidate and tested its efficacy in the only lethal-disease animal model of HPS. Syrian hamsters immunized with a single injection of VSVΔG/ANDVGPC were fully protected against disease when challenged at 28, 14, 7, or 3 days postimmunization with a lethal dose of ANDV; however, the mechanism of protection seems to differ depending on when the immunization occurs. At 28 days postimmunization, a lack of detectable ANDV RNA in lung, liver, and blood tissue samples, as well as a lack of seroconversion to the ANDV nucleocapsidprotein in nearly all animals, suggested largely sterile immunity. The vaccine was able to generate high levels of neutralizing anti-ANDV G(N)/G(C) antibodies, which seem to play a role as a mechanism of vaccine protection. Administration of the vaccine at 7 or 3 days before challenge also resulted in full protection but with no specific neutralizing humoral immune response, suggesting a possible role of innate responses in protection against challenge virus replication. Administration of the vaccine 24 h postchallenge was successful in protecting 90% of hamsters and again suggested the induction of a potent antiviral state by the recombinant vector as a potential mechanism. Overall, our data suggest the potential for the use of the VSV platform as a fast-acting and effective prophylaxis/postexposure treatment against lethal hantavirus infections.  相似文献   

13.
Immunization of mice with DNA encoding the influenza virus hemagglutinin (HA) affords complete protection against lethal influenza virus infection and the means to investigate the mechanisms of B-cell responsiveness to virus challenge. Using a single-cell enzyme-linked immunospot assay, we sought to determine the localization of HA-specific antibody-forming cells (AFCs) during the development of humoral immunity in mice given HA DNA vaccine by gene gun. At 33 days postvaccination, populations of AFCs were maintained in the spleen and bone marrow. In response to lethal challenge with influenza virus, the AFCs became localized at the site of antigenic challenge, i.e., within the draining lymph nodes of the lung compartment. Immunoglobulin G (IgG)- and IgA-producing AFCs were detected in lymph nodes of the upper and lower respiratory tracts, underscoring their importance in clearing virus from the lungs. Response to challenge required competent CD4+ T cells, without which no AFCs were generated, even those producing IgM. By contrast, in mice vaccinated with an HA-containing subunit vaccine, fewer AFCs were generated in response to challenge, and these animals were less capable of resisting infection. Our findings demonstrate the comparable localization of AFCs in response to challenge in mice vaccinated with either HA DNA or live virus. Moreover, the former strategy generates both IgG- and IgA-producing plasma cells.  相似文献   

14.
We analyzed the ability of a vaccine vector based on vesicular stomatitis virus (VSV) to induce a neutralizing antibody (NAb) response to avian influenza viruses (AIVs) in rhesus macaques. Animals vaccinated with vectors expressing either strain A/Hong Kong/156/1997 or strain A/Vietnam/1203/2004 H5 hemagglutinin (HA) were able to generate robust NAb responses. The ability of the vectors to induce NAbs against homologous and heterologous AIVs after a single dose was dependent upon the HA antigen incorporated into the VSV vaccine. The vectors expressing strain A/Vietnam/1203/2004 H5 HA were superior to those expressing strain A/Hong Kong/156/1997 HA at inducing cross-clade NAbs.  相似文献   

15.

Background

New highly pathogenic H5N1 influenza viruses are continuing to evolve with a potential threat for an influenza pandemic. So far, the H5N1 influenza viruses have not widely circulated in humans and therefore constitute a high risk for the non immune population. The aim of this study was to evaluate the cross-protective potential of the hemagglutinins of five H5N1 strains of divergent clades using a live attenuated modified vaccinia Ankara (MVA) vector vaccine.

Methodology/Principal Findings

The replication-deficient MVA virus was used to express influenza hemagglutinin (HA) proteins. Specifically, recombinant MVA viruses expressing the HA genes of the clade 1 virus A/Vietnam/1203/2004 (VN/1203), the clade 2.1.3 virus A/Indonesia/5/2005 (IN5/05), the clade 2.2 viruses A/turkey/Turkey/1/2005 (TT01/05) and A/chicken/Egypt/3/2006 (CE/06), and the clade 2.3.4 virus A/Anhui/1/2005 (AH1/05) were constructed. These experimental live vaccines were assessed in a lethal mouse model. Mice vaccinated with the VN/1203 hemagglutinin-expressing MVA induced excellent protection against all the above mentioned clades. Also mice vaccinated with the IN5/05 HA expressing MVA induced substantial protection against homologous and heterologous AH1/05 challenge. After vaccination with the CE/06 HA expressing MVA, mice were fully protected against clade 2.2 challenge and partially protected against challenge of other clades. Mice vaccinated with AH1/05 HA expressing MVA vectors were only partially protected against homologous and heterologous challenge. The live vaccines induced substantial amounts of neutralizing antibodies, mainly directed against the homologous challenge virus, and high levels of HA-specific IFN-γ secreting CD4 and CD8 T-cells against epitopes conserved among the H5 clades and subclades.

Conclusions/Significance

The highest level of cross-protection was induced by the HA derived from the VN/1203 strain, suggesting that pandemic H5 vaccines utilizing MVA vector technology, should be based on the VN/1203 hemagglutinin. Furthermore, the recombinant MVA-HA-VN, as characterized in the present study, would be a promising candidate for such a vaccine.  相似文献   

16.
Recombinant vesicular stomatitis virus (VSV) vectors expressing homologous filoviral glycoproteins can completely protect rhesus monkeys against Marburg virus when administered after exposure and can partially protect macaques after challenge with Zaire ebolavirus. Here, we administered a VSV vector expressing the Sudan ebolavirus (SEBOV) glycoprotein to four rhesus macaques shortly after exposure to SEBOV. All four animals survived SEBOV challenge, while a control animal that received a nonspecific vector developed fulminant SEBOV hemorrhagic fever and succumbed. This is the first demonstration of complete postexposure protection against an Ebola virus in nonhuman primates and provides further evidence that postexposure vaccination may have utility in treating exposures to filoviruses.  相似文献   

17.
H7N9 has caused fatal infections in humans. A safe and effective vaccine is the best way to prevent large-scale outbreaks in the human population. Parainfluenza virus 5 (PIV5), an avirulent paramyxovirus, is a promising vaccine vector. In this work, we generated a recombinant PIV5 expressing the HA gene of H7N9 (PIV5-H7) and tested its efficacy against infection with influenza virus A/Anhui/1/2013 (H7N9) in mice and guinea pigs. PIV5-H7 protected the mice against lethal H7N9 challenge. Interestingly, the protection did not require antibody since PIV5-H7 protected JhD mice that do not produce antibody against lethal H7N9 challenge. Furthermore, transfer of anti-H7 serum did not protect mice against H7N9 challenge. PIV5-H7 generated high HAI titers in guinea pigs, however it did not protect against H7N9 infection or transmission. Intriguingly, immunization of guinea pigs with PIV5-H7 and PIV5 expressing NP of influenza A virus H5N1 (PIV5-NP) conferred protection against H7N9 infection and transmission. Thus, we have obtained a H7N9 vaccine that protected both mice and guinea pigs against lethal H7N9 challenge and infection respectively.  相似文献   

18.
Efforts to develop a broadly protective vaccine against the highly pathogenic avian influenza A (HPAI) H5N1 virus have focused on highly conserved influenza gene products. The viral nucleoprotein (NP) and ion channel matrix protein (M2) are highly conserved among different strains and various influenza A subtypes. Here, we investigate the relative efficacy of NP and M2 compared to HA in protecting against HPAI H5N1 virus. In mice, previous studies have shown that vaccination with NP and M2 in recombinant DNA and/or adenovirus vectors or with adjuvants confers protection against lethal challenge in the absence of HA. However, we find that the protective efficacy of NP and M2 diminishes as the virulence and dose of the challenge virus are increased. To explore this question in a model relevant to human disease, ferrets were immunized with DNA/rAd5 vaccines encoding NP, M2, HA, NP+M2 or HA+NP+M2. Only HA or HA+NP+M2 vaccination conferred protection against a stringent virus challenge. Therefore, while gene-based vaccination with NP and M2 may provide moderate levels of protection against low challenge doses, it is insufficient to confer protective immunity against high challenge doses of H5N1 in ferrets. These immunogens may require combinatorial vaccination with HA, which confers protection even against very high doses of lethal viral challenge.  相似文献   

19.
The mucosal adjuvant effect of synthetic double-stranded RNA polyriboinosinic polyribocytidylic acid [poly(I:C)] against influenza virus was examined under intranasal coadministration with inactivated hemagglutinin (HA) vaccine in BALB/c mice and was shown to have a protective effect against both nasal-restricted infection and lethal lung infection. Intranasal administration of vaccine from PR8 (H1N1) with poly(I:C) induced a high anti-HA immunoglobulin A (IgA) response in the nasal wash and IgG antibody response in the serum, while vaccination without poly(I:C) induced little response. Intracerebral injection confirmed the safety of poly(I:C). In addition, we demonstrated that administration of poly(I:C) with either A/Beijing (H1N1) or A/Yamagata (H1N1) vaccine conferred complete protection against PR8 challenge in this mouse nasal infection model, suggesting that poly(I:C) possessed cross-protection ability against variant viruses. To investigate the mechanism of the protective effect of poly(I:C), mRNA levels of Toll-like receptors and cytokines were examined in the nasal-associated lymphoid tissue after vaccination or virus challenge. Intranasal administration of HA vaccine with poly(I:C) up-regulated expression of Toll-like receptor 3 and alpha/beta interferons as well as Th1- and Th2-related cytokines. We propose that poly(I:C) is a new effective intranasal adjuvant for influenza virus vaccine.  相似文献   

20.
Exocytic organelles undergo profound reorganization during myoblast differentiation and fusion. Here, we analyzed whether glycoprotein processing and targeting changed during this process by using vesicular stomatitis virus (VSV) G protein and influenza virus hemagglutinin (HA) as models. After the induction of differentiation, the maturation and transport of the VSV G protein changed dramatically. Thus, only half of the G protein was processed and traveled through the Golgi, whereas the other half remained unprocessed. Experiments with the VSV tsO45 mutant indicated that the unprocessed form folded and trimerized normally and then exited the ER. It did not, however, travel through the Golgi since brefeldin A recalled it back to the ER. Influenza virus HA glycoprotein, on the contrary, acquired resistance to endoglycosidase H and insolubility in Triton X-100, indicating passage through the Golgi. Biochemical and morphological assays indicated that the HA appeared at the myotube surface. A major fraction of the Golgi-processed VSV G protein, however, did not appear at the myotube surface, but was found in intracellular vesicles that partially colocalized with the regulatable glucose transporter. Taken together, the results suggest that, during early myogenic differentiation, the VSV G protein was rerouted into developing, muscle-specific membrane compartments. Influenza virus HA, on the contrary, was targeted to the myotube surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号