首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of NAD+ analogues, modified on the pyridinium ring, have been tested for their enzymic properties in reactions with D-glyceraldehyde-3-phosphate dehydrogenase form sturgeon muscle, rabbit muscle and Bacillus stearothermophilus. The observed activity, inhibition and binding data are correlated to the structure of the enzyme and coenzyme analogue by model building on a Vector General interactive graphic display system using coordinates from the B. stearothermophilus holoenzyme structure. Most of the analogues with substituents in the pyridinium-3 position could be bound to glyceraldehyde-3-phosphate dehydrogenase, either in manner similar to NAD+ or in a completely different way with the substituted pyridinium ring rotated 110 degrees or more around the glycosidic bond. This indicates different possible modes of binding of NAD+ analogues within the pyridinium binding subsite. Analogues with substituents in the pyridinium-4 position are shown to be weakly bound to glyceraldehyde-3-phosphate dehydrogenase. This is explained by a strong interaction of the substituent in the 4 position with the residues Asn-313 and Cys-149.  相似文献   

2.
To better understand the role of nicotinic acid and nicotinamide in the regulation of the oxidative stress response, we measured the levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glucose-6-phosphate dehydrogenase (G6PD) mRNA in Jurkat cells treated with these NAD+ precursors. We used a modified nonradioactive Northern blot method and detected the mRNA using 18-mer digoxigenin (DIG)-labeled oligonucleotides as probes. We observed increased levels of the mRNAs for the two enzymes in treated cells. Our findings suggest that the NAD+ precursors may protect against oxidative stress and DNA damage by up-regulating the stress response genes GAPDH and G6PD.  相似文献   

3.
The stereospecificity of the reaction catalysed by the spinach chloroplast enzyme NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NADP+ oxidoreductase (phosphorylating), EC 1.2.1.13) with respect to the C4 nicotinamide hydrogen transfer was investigated. NADPH deuterated at the C4 HA position was synthesized using aldehyde dehydrogenase. 1H-NMR spectroscopy was used to examine the NADP+ product of the GPDH reaction for the presence or absence of the C4 deuterium atom. Chloroplast NADP-dependent glyceraldehyde-3-phosphate dehydrogenase retains the deuterium at the C4 HA position (removing the hydrogen atom), and is therefore a B (pro-S) specific dehydrogenase.  相似文献   

4.
The catalytic interaction of glyceraldehyde-3-phosphate dehydrogenase with glyceraldehyde 3-phosphate has been examined by transient-state kinetic methods. The results confirm previous reports that the apparent Km for oxidative phosphorylation of glyceraldehyde 3-phosphate decreases at least 50-fold when the substrate is generated in a coupled reaction system through the action of aldolase on fructose 1,6-bisphosphate, but lend no support to the proposal that glyceraldehyde 3-phosphate is directly transferred between the two enzymes without prior release to the reaction medium. A theoretical analysis is presented which shows that the kinetic behaviour of the coupled two-enzyme system is compatible in all respects tested with a free-diffusion mechanism for the transfer of glyceraldehyde 3-phosphate from the producing enzyme to the consuming one.  相似文献   

5.
An NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase (d-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC. 1.2.1.12) has been purified from spinach leaves as a homogeneous protein of 150 000 daltons.Kinetic constants of 2.5·10−4 M and 4 · 10−4 M have been calculated for NAD+ and glyceraldehyde 3-phosphate, respectively.The amino acid composition is characterized by a cysteine content higher than that found in analogous enzymes.On sodium dodecyl sulphate gel electrophoresis, the native enzyme dissociates into two subunits of 37 000 and 14 000 daltons. The two subunits have been isolated in equimolar amounts by gel filtration; end-group analysis shows that alanine is the N-terminal residue of the large subunit, while serine is found at the N-terminus of the small subunit.Comparison of amino acid analyses and peptide maps shows that the two subunits have a different amino acid sequence. These results indicate that the NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase, isolated from spinach leaves has an atypical oligomeric structure, the protomer being formed by two different subunits.  相似文献   

6.
An NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC. 1.2.1.12) has been purified from spinach leaves as a homogeneous protein of 150,000 daltons. Kinetic constants of 2.5 . 10(-4) M and 4 . 10(-4) M have been calculated for NAD+ and glyceraldehyde-3-phosphate, respectively. The amino acid composition is characterized by a cysteine content higher than that found in analogous enzymes. On sodium dodecyl sulphate gel electrophoresis, the native enzyme dissociates into two subunits of 37,000 and 14,000 daltons. The two subunits have been isolated in equimolar amounts by gel filtration; end-group analysis shows that alanine is the N-terminal residue of the large subunit, while serine is found at the N-terminus of the small subunit. Comparison of amino acid analysies and peptide maps shows that the two subunits have a different amino acid sequence. These results indicate that the NAD+-dependent glyceraldehyde-3-phosphate, dehydrogenase, isolated from spinach leaves has an atypical oligomeric structure, the protomer being formed by two different subunits.  相似文献   

7.
N6-Naphthalenemethyl-2'-methoxybenzamido-beta-NAD+, a derivative of a low micromolar first-generation inhibitor of trypanosomal glyceraldehyde phosphate dehydrogenase (GAPDH), was synthesized, taking advantage of methodology for the selective phosphitylation of nucleosides. The compound was found to be a poor alternate cosubstrate for GAPDH, but an extremely potent inhibitor. Although intended for use in crystallization trials, the analogue presents possibilities for further drug design.  相似文献   

8.
Mycoplasma genitalium is the smallest known self-replicating cell. It was first isolated from urethral specimens in individuals with non-gonococcal urethritis and, more recently, from respiratory and synovial sites. Our laboratory has been interested in defining the mechanisms by which M. genitalium adheres to and colonizes host cell surfaces. In order to determine potential targets of adherence, we examined the interaction of M. genitalium with a primary component of the mucosal epithelial lining, mucin (Mn). Three Mn-binding proteins (MnBPs) of M. genitalium were isolated by affinity chromatography. One of these proteins was identified by N-terminal sequencing as glyceraldehyde-3-phosphate dehy-drogenase (GAPDH). Antiserum raised against recombinant GAPDH blocked binding of intact biosynthetically labelled mycoplasmas to mucin by approximately 70%. Whole cell radioimmunoprecipitation indicated that GAPDH was surface-accessible and surface localization of GAPDH was further verified by membrane fractionation and immunoelectron microscopy. The role of GAPDH as an adhesin to Mn not only provides insights into the organism's mechanisms of adherence and colonization but also into its ability to maximize its limited genome.  相似文献   

9.
Lipid transfer proteins (LTPs) are a protein family found in plants with a variety of functions. In addition to lipid binding, LTPs also bind to calmodulin and Ca2+-dependent protein kinase (CDPK), which are calcium signal transducers. For the first time, we identified glyceraldehyde-3- phosphate dehydrogenase (GAPDH) as a novel binding protein of LTP-CaMBP10 in Chinese cabbage. This binding was confirmed using multiple biochemical approaches. The effects of this interaction on GAPDH activity were assessed for both recombinant and endogenous GAPDH proteins. LTP-CaMBP10 does not appear to affect nicotinamide adenine dinucleotide (NAD)-dependent GAPDH activity. In contrast, it significantly suppresses nicotinamide adenine dinucleotide phosphate (NADPH) consumption by GAPDH in a dosage-dependent manner. This result indicated a specific role of GAPDH in regulating LTP functions and implicating crosstalk between LTP-dependent and GAPDH-dependent biological events.  相似文献   

10.
Enzyme protein fluorescence of di-furylacryloyl-glyceraldehyde-3-phosphate dehydrogenase (di-FA-GPDH:lambda max.excitation 290 nm, lambda max.emission 338 nm) is quenched about 28% on saturation with NAD+. Results of fluorometric titration of di-FA-GPDH with NAD+ suggest the presence of two tight and two loose coenzyme binding sites (Kdiss. 0.1 and 6.0 microM, respectively). Initial rates of the NAD(+)-dependent reaction of di-FA-GPDH with arsenate and phosphate and of mono-FA-GPDH with phosphate have been determined at varying coenzyme concentrations. The data suggest that binding of NAD+ at the tight sites does not activate the acyl group for its reaction with the acceptor (phosphate or arsenate). The group transfer reaction is dependent only on NAD+ binding to the loose sites, which carry the acyl group. The large difference in the NAD+ binding affinity to the two types of sites and their different effects on the group transfer reaction impart a sigmoidal shape to the rate versus [NAD+] plots. The sigmoidicity is abolished if the reactive SH groups at the unacylated sites are blocked by carboxymethylation.  相似文献   

11.
Directed mutagenesis has been used to study the nicotinamide subsite of the glycolytic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Residue Asn313 is involved together with the carboxyamide moiety of the nicotinamide ring in a complex network of hydrogen bonding interactions which fix the position of the pyridinium ring of NAD to which hydride transfer occurs at the C-4 position in the catalytic reaction. The asparagine side-chain has been replaced by that of the Thr and Ala residues and results in mutants with very similar properties. Both mutants show much weaker binding of NAD and lower catalytic efficiency. The mutant Asn313----Thr still exhibits strict B-stereospecificity in hydride transfer and retains the property of negative co-operativity in NAD binding. These experiments strongly suggest that the mutant enzyme undergoes the apo----holo sub-unit structural transition associated with coenzyme binding but that the nicotinamide ring is no longer as rigidly held in its pocket as in the wild type enzyme. The results shed light on the details of the molecular interactions which are responsible for negative co-operativity in this enzyme.  相似文献   

12.
13.
14.
Homotetrameric phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Bacillus stearothermophilus can be described as a dimer of dimers with three non-equivalent P, R, and Q interfaces. In our previous study, negative cooperativity in NAD binding to wild-type GAPDH was interpreted according to the induced-fit model in terms of two independent dimers with two interacting binding sites in each dimer. Two dimeric mutant GAPDHs, i.e. Y46G/S48G and D186G/E276G, were shown to exhibit positive cooperativity in NAD binding. Based on the molecular modeling of the substitutions and the fact that the most extensive inter-subunit interactions are formed across the P-axis interface of the tetramer, it was postulated that both dimeric mutant GAPDHs were of O-P type. Therefore, the P-axis interface was assumed to play a major role in causing cooperativity in NAD binding.Here, two other mutant GAPDHs, Y46G/R52G and D282G, have been studied. Using small angle X-ray scattering, the dimeric form of the D282G mutant GAPDH is shown to be of O-R type whereas both dimeric mutant GAPDHs Y46G/R52G and Y46G/S48G are of O-P type. Similarly to dimeric Y46G/S48G mutant GAPDH, the dimeric Y46G/R52G mutant GAPDH exhibits positive cooperativity in NAD binding. On the other hand, no significant cooperativity in NAD binding to the dimeric form of the D282G mutant GAPDH is observed, whereas its tetrameric counterpart exhibits negative cooperativity, similarly to the wild-type enzyme. Altogether, the results support the view that the P-axis interface is essential in causing cooperativity in NAD binding by transmitting the structural information induced upon cofactor binding from one subunit to the other one within O-P/Q-R dimers in contrast to the R-axis interface, which does not transmit structural information within O-R/Q-P dimers. The absence of activity of O-P and O-R dimer GAPDHs is the consequence of a pertubation of the conformation of the active site, at least of the nicotinamide subsite, as evidenced by the absence of an ion pair between catalytic residues C149 and H176 and the greater accessibility of C149 to a thiol kinetic probe.  相似文献   

15.
16.
17.
The genes which encode glycosomal glyceraldehyde-phosphate dehydrogenase (gGAPDH) of Trypanosoma cruzi are arranged as a tandemly repeated pair on a single chromosome and are identical at the level of nucleotide sequence. They are separated by an intergenic region which contains a 317 base pair sequence with the properties of a retroposon. The genes express a 1.5 kb mRNA and a 38 kd protein. The amino acid sequence contains features characteristic of glycosomal enzymes such as peptide insertions and a C-terminal extension. However, T. cruzi gGAPDH lacks one of the positively charged 'hotspot' motifs which have been proposed as topogenic signals for import into the glycosome, a unique microbody-like organelle. Molecular modelling of the T. cruzi and T. brucei enzymes suggests that neither structure would fulfil the requirements of the 'hotspot' glycosomal import model.  相似文献   

18.
M C Alevy  M J Tsai  B W O'Malley 《Biochemistry》1984,23(10):2309-2314
We have cloned a 36-kilobase segment of chicken DNA containing the gene coding for glyceraldehyde-3-phosphate dehydrogenase [GAPDH (EC 1.2.1.12)], a glycolytic enzyme which is expressed constitutively in all cell types. Using defined segments of this cloned DNA as probes, we have determined the DNase I sensitive domain of the GAPDH natural gene in the hen oviduct. When nuclei isolated from hen oviduct were treated with DNase I under conditions known to preferentially degrade actively transcribed genes (i.e., 15-20% of the DNA rendered perchloric acid soluble), a region of approximately 12 kilobase(s) (kb) containing the GAPDH coding sequences and flanking DNA was found to be highly susceptible to digestion by DNase I. Approximately 4 kb downstream from the end of the coding sequences, there was an abrupt transition from the DNase I sensitive or "open" configuration to the resistant or "closed" configuration. The chromatin then remained in a closed conformation for at least 10 kb further downstream. On the 5' side of the gene, the transition from a sensitive to a resistant configuration was located about 4 kb upstream from the gene. In addition, we have localized two repeated sequences in the area of DNA that was cloned. One of these is of the CR1 family of middle repetitive elements. It is located about 18 kb 3' to the gene and as such lies well outside of the DNase I sensitive region which encompasses GAPDH. The other repetitive element is of an uncharacterized family. It is located upstream from the gene and appears to be within a region of transition from the DNase I sensitive to resistant states.  相似文献   

19.
20.
A lambda gt11 cDNA library from Candida albicans ATCC 26555 was screened by using pooled sera from two patients with systemic candidiasis and five neutropenic patients with high levels of anti-C. albicans immunoglobulin M antibodies. Seven clones were isolated from 60,000 recombinant phages. The most reactive one contained a 0.9-kb cDNA encoding a polypeptide immunoreactive only with sera from patients with systemic candidiasis. The whole gene was isolated from a genomic library by using the cDNA as a probe. The nucleotide sequence of the coding region showed homology (78 to 79%) to the Saccharomyces cerevisiae TDH1 to TDH3 genes coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and their amino acid sequences showed 76% identity; thus, this gene has been named C. albicans TDH1. A rabbit polyclonal antiserum against the purified cytosolic C. albicans GAPDH (polyclonal antibody [PAb] anti-CA-GAPDH) was used to identify the GAPDH in the beta-mercaptoethanol extracts containing cell wall moieties. Indirect immunofluorescence demonstrated the presence of GAPDH at the C. albicans cell surface, particularly on the blastoconidia. Semiquantitative flow cytometry analysis showed the sensitivity of this GAPDH form to trypsin and its resistance to be removed with 2 M NaCl or 2% sodium dodecyl sulfate. The decrease in fluorescence in the presence of soluble GAPDH indicates the specificity of the labelling. In addition, a dose-dependent GAPDH enzymatic activity was detected in intact blastoconidia and germ tube cells. This activity was reduced by pretreatment of the cells with trypsin, formaldehyde, and PAb anti-CA-GAPDH. These observations indicate that an immunogenic, enzymatically active cell wall-associated form of the glycolytic enzyme GAPDH is found at the cell surface of C. albicans cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号