首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAE(LB400)) catalyzes the dihydroxylation of biphenyl and of several polychlorinated biphenyls (PCBs) but it poorly oxidizes dibenzofuran. In this work we showed that BphAE(RR41), a variant which was previously found to metabolize dibenzofuran more efficiently than its parent BphAE(LB400), metabolized a broader range of PCBs than BphAE(LB400). Hence, BphAE(RR41) was able to metabolize 2,6,2',6'-, 3,4,3',5'- and 2,4,3',4'-tetrachlorobiphenyl that BphAE(LB400) is unable to metabolize. BphAE(RR41) was obtained by changing Thr335Phe336Asn338Ile341Leu409 of BphAE(LB400) to Ala335Met336Gln338Val341Phe409. Site-directed mutagenesis was used to create combinations of each substitution, in order to assess their individual contributions. Data show that the same Asn338Glu/Leu409Phe substitution that enhanced the ability to metabolize dibenzofuran resulted in a broadening of the PCB substrates range of the enzyme. The role of these substitutions on regiospecificities toward selected PCBs is also discussed.  相似文献   

2.
Rieske-type oxygenases are promising biocatalysts for the destruction of persistent pollutants or for the synthesis of fine chemicals. In this work, we explored pathways through which Rieske-type oxygenases evolve to expand their substrate range. BphAE(p4), a variant biphenyl dioxygenase generated from Burkholderia xenovorans LB400 BphAE(LB400) by the double substitution T335A/F336M, and BphAE(RR41), obtained by changing Asn(338), Ile(341), and Leu(409) of BphAE(p4) to Gln(338), Val(341), and Phe(409), metabolize dibenzofuran two and three times faster than BphAE(LB400), respectively. Steady-state kinetic measurements of single- and multiple-substitution mutants of BphAE(LB400) showed that the single T335A and the double N338Q/L409F substitutions contribute significantly to enhanced catalytic activity toward dibenzofuran. Analysis of crystal structures showed that the T335A substitution relieves constraints on a segment lining the catalytic cavity, allowing a significant displacement in response to dibenzofuran binding. The combined N338Q/L409F substitutions alter substrate-induced conformational changes of protein groups involved in subunit assembly and in the chemical steps of the reaction. This suggests a responsive induced fit mechanism that retunes the alignment of protein atoms involved in the chemical steps of the reaction. These enzymes can thus expand their substrate range through mutations that alter the constraints or plasticity of the catalytic cavity to accommodate new substrates or that alter the induced fit mechanism required to achieve proper alignment of reaction-critical atoms or groups.  相似文献   

3.
Many investigations have provided evidence that plant secondary metabolites, especially flavonoids, may serve as signal molecules to trigger the abilities of bacteria to degrade chlorobiphenyls in soil. However, the bases for this interaction are largely unknown. In this work, we found that BphAE(B356), the biphenyl/chlorobiphenyl dioxygenase from Pandoraea pnomenusa B356, is significantly better fitted to metabolize flavone, isoflavone, and flavanone than BphAE(LB400) from Burkholderia xenovorans LB400. Unlike those of BphAE(LB400), the kinetic parameters of BphAE(B356) toward these flavonoids were in the same range as for biphenyl. In addition, remarkably, the biphenyl catabolic pathway of strain B356 was strongly induced by isoflavone, whereas none of the three flavonoids induced the catabolic pathway of strain LB400. Docking experiments that replaced biphenyl in the biphenyl-bound form of the enzymes with flavone, isoflavone, or flavanone showed that the superior ability of BphAE(B356) over BphAE(LB400) is principally attributable to the replacement of Phe336 of BphAE(LB400) by Ile334 and of Thr335 of BphAE(LB400) by Gly333 of BphAE(B356). However, biochemical and structural comparison of BphAE(B356) with BphAE(p4), a mutant of BphAE(LB400) which was obtained in a previous work by the double substitution Phe336Met Thr335Ala of BphAE(LB400), provided evidence that other residues or structural features of BphAE(B356) whose precise identification the docking experiment did not allow are also responsible for the superior catalytic abilities of BphAE(B356). Together, these data provide supporting evidence that the biphenyl catabolic pathways have evolved divergently among proteobacteria, where some of them may serve ecological functions related to the metabolism of plant secondary metabolites in soil.  相似文献   

4.
DDTs(dichlorodiphenyltrichloroethane,1,1,1-三氯-2,2-双氯苯基乙烷)是一种典型的持久性有机污染物,曾在疟疾防治和农业除虫方面被广泛应用。虽然包括我国在内的很多国家已经禁止使用DDTs,但目前对环境中DDTs的检测发现它仍然广泛存在且具有新的输入源。DDTs的持续存在对近海生态系统和人类健康具有一定危害,因此它所造成的环境污染问题仍然值得关注。由于Rieske型芳香羟化双加氧酶能够起始多种持久性污染物的降解,过去的几十年里一直是芳香化合物降解领域的焦点。[目的] 为探讨联苯双加氧酶对DDTs的降解特性及机制,本研究选取了食异生素伯克霍尔德氏菌LB400(Burkholderia xenovorans)联苯双加氧酶及突变体对p,p''-DDT和o,p''-DDT的降解过程进行研究。[方法] 以BphAELB400为亲本,通过两步定点突变将283位的丝氨酸突变为蛋氨酸,获得突变体BphAES283M。通过比较亲本酶与突变体对DDTs的催化性能,模拟突变蛋白结构和分子对接等方法,探究其降解特性及机制。[结果] BphAELB400和突变体BphAES283M都无法降解对位的p,p''-DDT,但突变体BphAES283M可以代谢o,p''-DDT并产生2个立体异构体。对接p,p''-DDT的BphAELB400和BphAES283M的结构分析表明,BphAELB400和BphAES283Mp,p''-DDT的反应环均不与原晶体结构中的联苯反应环重合。而对接o,p''-DDT的BphAES283M的结构分析表明o,p''-DDT的反应环与晶体结构中的联苯反应环距离很近,且2、3位的碳原子与单核铁原子催化中心的距离在0.5 nm以内,此外,BphAES283M的催化腔表面积和体积比BphAELB400更大,这很可能有助于BphAES283Mo,p''-DDT的结合。[结论] 283位氨基酸是影响BphAELB400对DDTs的催化代谢能力的关键氨基酸残基,它可以通过调节反应碳原子与催化中心的距离以及催化腔的大小来影响底物特异性。本次研究进一步阐明了283位氨基酸残基的影响机理,为更有效修复DDTs污染提供理论依据和技术支持。  相似文献   

5.
The biphenyl dioxygenase (BPDO) catalyses a stereospecific dioxygenation of biphenyl and analogs of it. Aside from being involved in the destruction and detoxification of toxic pollutants in soil, in the context of the green chemistry concept, this enzyme is a promising biocatalyst to design new more selective and more environmentally friendly approaches to manufacture fine chemicals. At this time, most of our knowledge about the variability of key residues determining the substrate specificity and regiospecificity of the enzyme oxygenase component (BphAE) toward biphenyl analogs and about the effect of altering these residues on catalytic properties is based on investigations made with BphAEs from cultured organisms and engineered enzymes derived from them. The purpose of this work was to examine the diversity of the amino acid sequence patterns of the alpha subunit (BphA) C-terminal domain deduced from PCR products amplified from DNA extracted from cultured bacteria of various phylogenetic lines and from the soil microflora of PCB-contaminated soils. Of special interest were segments of the C-terminal portion called regions I, III and IV. Altogether, the phylogenetic tree obtained from aligning the deduced amino acid sequences of BphAs C-terminal domain from cultured bacteria belonging to various ecological niches and from uncultured soil bacteria reveals that most of the BphAs were linked to the three clusters of BphAs previously reported. However, few belong to new branches that diverge from the previously known branches showing a high diversity of BphAs in natural environment. Furthermore, data show a wide distribution of BphAs with family linkages that not only crosses bacterial taxonomic frontiers but also ecological niches. Nevertheless, in spite of this divergence, the sequence patterns of regions III and IV amino acids that are known to influence substrate specificity and regiospecificity are rather conserved among BphAs and the pattern was independent of the family cluster to which they belong. In most cases, regions III and IV amino acid patterns are closer to those of Pseudomonas pseudoalcaligenes KF707 BphA1 than to the most versatile Burkholderia xenovorans LB400 BphA. This might suggest that the PCB-degrading potency of soil bacteria is closer to the one observed for KF707 BphAE than from LB400 BphAE. However, the fact that among less than 20 PCR products amplified from soil DNA that we have sequenced, one of them was very homologous to that of LB400 BphA and in addition, residues 335 and 336 of LB400 were replaced by residues that previous enzyme engineering had shown to extend the range of PCB substrate used by the enzyme strongly suggest that PCB-degrading bacteria are evolving in soil to optimize their PCB-degrading capacity.  相似文献   

6.
In this work we have investigated the ability of the biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAELB400) and of Pandoraea pnomenusa B356 (BphAEB356) to metabolize DDT. Data show BphAELB400 is unable to metabolize this substrate but BphAEB356 metabolizes DDT to produce two stereoisomers. Structural analysis of DDT-docked BphAELB400 and BphAEB356 identified residue Phe336 of BphAELB400 as critical to prevent productive binding of DDT to BphAELB400. Furthermore, the fact that residue Gly319 of BphAEB356 is less constrained than Gly321 of BphAELB400 most likely contributes to the ability of BphAEB356 to bind DDT productively. This was confirmed by examining the ability of BphAE chimeras obtained by shuffling bphA genes from strain B356 and LB400. Chimeras where residues Thr335 (which modulates the constraints on Gly321) and Phe336 (which contacts the substrate) of BphAELB400 were replaced by Gly and Ile respectively were able to metabolize DDT. However their stereospecificities varied depending on the presence of other segments or residues from BphAEB356. Structural analysis suggests that either one or both of residue 267 and a segments comprised of residue 247–260 are likely involved in stereospecificity.  相似文献   

7.
The attack by the bph-encoded biphenyl dioxygenase of Burkholderia sp. strain LB400 on a number of symmetrical ortho-substituted biphenyls or quasi ortho-substituted biphenyl analogues has been investigated. 2,2'-Difluoro-, 2,2'-dibromo-, 2,2'-dinitro-, and 2,2'-dihydroxybiphenyl were accepted as substrates. Dioxygenation of all of these compounds showed a strong preference for the semisubstituted pair of vicinal ortho and meta carbons, leading to the formation of 2'-substituted 2,3-dihydroxybiphenyls by subsequent elimination of HX (X = F, Br, NO(2), or OH). All of these products were further metabolized by 2,3-dihydroxybiphenyl 1,2-dioxygenases of Burkholderia sp. strain LB400 or of Rhodococcus globerulus P6. Dibenzofuran and dibenzodioxin, which may be regarded as analogues of doubly ortho-substituted biphenyls or diphenylethers, respectively, were attacked at the "quasi ortho" carbon (the angular position 4a) and its neighbor. This shows that an aromatic ring-hydroxylating dioxygenase of class IIB is able to attack angular carbons. The catechols formed, 2,3,2'-trihydroxybiphenyl and 2,3,2'-trihydroxydiphenylether, were further metabolized by 2,3-dihydroxybiphenyl 1,2-dioxygenase. While angular attack by the biphenyl dioxygenase was the main route of dibenzodioxin oxidation, lateral dioxygenation leading to dihydrodiols was the major reaction with dibenzofuran. These results indicate that this enzyme is capable of hydroxylating ortho or angular carbons carrying a variety of substituents which exert electron-withdrawing inductive effects. They also support the view that the conversions of phenols into catechols by ring-hydroxylating dioxygenases, such as the transformation of 2,2'-dihydroxybiphenyl into 2,3,2'-trihydroxybiphenyl, are the results of di- rather than of monooxygenations. Lateral dioxygenation of dibenzofuran and subsequent dehydrogenation and extradiol dioxygenation by a number of biphenyl-degrading strains yielded intensely colored dead-end products. Thus, dibenzofuran can be a useful chromogenic indicator for the activity of the first three enzymes of biphenyl catabolic pathways.  相似文献   

8.
Optimized plant-microbe bioremediation processes in which the plant initiates the metabolism of xenobiotics and releases the metabolites in the rhizosphere to be further degraded by the rhizobacteria is a promising alternative to restore contaminated sites in situ. However, such processes require that plants produce the metabolites that bacteria can readily oxidize. The biphenyl dioxygenase is the first enzyme of the bacterial catabolic pathway involved in the degradation of polychlorinated biphenyls. This enzyme consists of three components: the two sub-unit oxygenase (BphAE) containing a Rieske-type iron-sulfur cluster and a mononuclear iron center, the Rieske-type ferredoxin (BphF), and the FAD-containing ferredoxin reductase (BphG). In this work, based on analyses with Nicotiana benthamiana plants transiently expressing the biphenyl dioxygenase genes from Burkholderia xenovorans LB400 and transgenic Nicotiana tabacum plants transformed with each of these four genes, we have shown that each of the three biphenyl dioxygenase components can be produced individually as active protein in tobacco plants. Therefore, when BphAE, BphF, and BphG purified from plant were used to catalyze the oxygenation of 4-chlorobiphenyl, detectable amounts of 2,3-dihydro-2, 3-dihydroxy-4'-chlorobiphenyl were produced. This suggests that creating transgenic plants expressing simultaneously all four genes required to produce active biphenyl dioxygenase is feasible.  相似文献   

9.
In this work, we have compared the ability of Pandoraea pnomenusa B356 and of Burkholderia xenovorans LB400 to metabolize diphenylmethane and benzophenone, two biphenyl analogs in which the phenyl rings are bonded to a single carbon. Both chemicals are of environmental concern. P. pnomenusa B356 grew well on diphenylmethane. On the basis of growth kinetics analyses, diphenylmethane and biphenyl were shown to induce the same catabolic pathway. The profile of metabolites produced during growth of strain B356 on diphenylmethane was the same as the one produced by isolated enzymes of the biphenyl catabolic pathway acting individually or in coupled reactions. The biphenyl dioxygenase oxidizes diphenylmethane to 3-benzylcyclohexa-3,5-diene-1,2-diol very efficiently, and ultimately this metabolite is transformed to phenylacetic acid, which is further metabolized by a lower pathway. Strain B356 was also able to cometabolize benzophenone through its biphenyl pathway, although in this case, this substrate was unable to induce the biphenyl catabolic pathway and the degradation was incomplete, with accumulation of 2-hydroxy-6,7-dioxo-7-phenylheptanoic acid. Unlike strain B356, B. xenovorans LB400 did not grow on diphenylmethane. Its biphenyl pathway enzymes metabolized diphenylmethane, but they poorly metabolize benzophenone. The fact that the biphenyl catabolic pathway of strain B356 metabolized diphenylmethane and benzophenone more efficiently than that of strain LB400 brings us to postulate that in strain B356, this pathway evolved divergently to serve other functions not related to biphenyl degradation.  相似文献   

10.
Rhodococcus sp. strain HA01, isolated through its ability to utilize dibenzofuran (DBF) as the sole carbon and energy source, was also capable, albeit with low activity, of transforming dibenzo-p-dioxin (DD). This strain could also transform 3-chlorodibenzofuran (3CDBF), mainly by angular oxygenation at the ether bond-carrying carbon (the angular position) and an adjacent carbon atom, to 4-chlorosalicylate as the end product. Similarly, 2-chlorodibenzofuran (2CDBF) was transformed to 5-chlorosalicylate. However, lateral oxygenation at the 3,4-positions was also observed and yielded the novel product 2-chloro-3,4-dihydro-3,4-dihydroxydibenzofuran. Two gene clusters encoding enzymes for angular oxygenation (dfdA1A2A3A4 and dbfA1A2) were isolated, and expression of both was observed during growth on DBF. Heterologous expression revealed that both oxygenase systems catalyze angular oxygenation of DBF and DD but exhibited complementary substrate specificity with respect to CDBF transformation. While DfdA1A2A3A4 oxygenase, with high similarity to DfdA1A2A3A4 oxygenase from Terrabacter sp. strain YK3, transforms 3CDBF by angular dioxygenation at a rate of 29% +/- 4% that of DBF, 2CDBF was not transformed. In contrast, DbfA1A2 oxygenase, with high similarity to the DbfA1A2 oxygenase from Terrabacter sp. strain DBF63, exhibited complementary activity with angular oxygenase activity against 2CDBF but negligible activity against 3CDBF. Thus, Rhodococcus sp. strain HA01 constitutes the first described example of a bacterial strain where coexpression of two angular dioxygenases was observed. Such complementary activity allows for the efficient transformation of chlorinated DBFs.  相似文献   

11.
MAP KAP kinase 2 (MK2), a Ser/Thr kinase, plays a crucial role in the inflammatory process. We have determined the crystal structures of a catalytically active C-terminal deletion form of human MK2, residues 41-364, in complex with staurosporine at 2.7 A and with ADP at 3.2 A, revealing overall structural similarity with other Ser/Thr kinases. Kinetic analysis reveals that the K(m) for ATP is very similar for MK2 41-364 and p38-activated MK2 41-400. Conversely, the catalytic rate and binding for peptide substrate are dramatically reduced in MK2 41-364. However, phosphorylation of MK2 41-364 by p38 restores the V(max) and K(m) for peptide substrate to values comparable to those seen in p38-activated MK2 41-400, suggesting a mechanism for regulation of enzyme activity.  相似文献   

12.
We examined the metabolism of dibenzofuran (DF) and dibenzo-p-dioxin (DD) by the biphenyl dioxygenase (BPDO) of Comamonas testosteroni B-356 and compared it with that of Burkholderia xenovorans LB400. Data showed that both enzymes oxygenated DF at a low rate, but Escherichia coli cells expressing LB400 BPDO degraded DF at higher rate (30 nmol in 18 h) compared with cells expressing B-356 BPDO (2 nmol in 18 h). Furthermore, both BPDOs produced dihydro-dihydroxy-dibenzofuran as a major metabolite, which resulted from the lateral oxygenation of DF. 2,2,3-Trihydroxybiphenyl (resulting from angular oxygenation of DF) was a minor metabolite produced by both enzymes. Deuterated DF was used to demonstrate the production of 2,2,3-dihydroxybiphenyl through angular oxygenation of DF. When tested for their ability to oxygenate DD, both enzymes produced as sole metabolite, 2,2,3-trihydroxybiphenyl ether at about the same rate, indicating similar catalytic properties toward this substrate. Altogether, although LB400 and B-356 BPDOs oxygenate a different range of chlorobiphenyls, their metabolite profiles toward DF and DD are similar. This suggests that co-planarity influences the regiospecificity of BPDO toward DF and DD to a higher extent than the presence of an ortho substituent on the molecule.  相似文献   

13.
Xenobiotic aromatic compounds represent one of the most significant classes of environmental pollutants. A novel benzoate oxidation (box) pathway has been identified recently in Burkholderia xenovorans LB400 (referred to simply as LB400) that is capable of assimilating benzoate and intimately tied to the degradation of polychlorinated biphenyls (PCBs). The box pathway in LB400 is present in two paralogous copies (boxM and boxC) and encodes eight enzymes with the first committed step catalyzed by benzoate CoA ligase (BCL). As a first step towards delineating the biochemical role of the box pathway in LB400, we have carried out functional studies of the paralogous BCL enzymes (BCLM and BCLC) with 20 different putative substrates. We have established a structural rationale for the observed substrate specificities on the basis of a 1.84 A crystal structure of BCLM in complex with benzoate. These data show that, while BCLM and BCLC display similar overall substrate specificities, BCLM is significantly more active towards benzoate and 2-aminobenzoate with tighter binding (Km) and a faster reaction rate (Vmax). Despite these clear functional differences, the residues that define the substrate-binding site in BCLM are completely conserved in BCLC, suggesting that second shell residues may play a significant role in substrate recognition and catalysis. Furthermore, comparison of the active site of BCLM with the recently solved structures of 4-chlorobenzoate CoA ligase and 2, 3-dihydroxybenzoate CoA ligase offers additional insight into the molecular features that mediate substrate binding in adenylate-forming enzymes. This study provides the first biochemical characterization of a Box enzyme from LB400 and the first structural characterization of a Box enzyme from any organism, and further substantiates the concept of distinct roles for the two paralogous box pathways in LB400.  相似文献   

14.
Biphenyl dioxygenase (Bph Dox) catalyzes the initial dioxygenation step in the metabolism of biphenyl. The large subunit (BphA1) of Bph Dox plays a crucial role in the determination of the substrate specificity of biphenyl-related compounds including polychlorinated biphenyls (PCBs). Previously, the substitution of Asn at Thr-376 near the active-site iron in the BphA1 of Pseudomonas pseudoalcaligenes KF707 expanded the oxidation range and altered the regiospecificity of Bph Dox for PCBs. In this study, we replaced Thr-376 with Gly, Ser, Gln, Tyr, Val, Phe, Asp, and Lys and expressed these enzymes in Escherichia coli. Bph Dox mutants of Thr376Asn, Thr376Val, Thr376Phe, and Thr376Lys showed novel degradation activity for dibenzofuran, which is a poor substrate for KF707 Bph Dox. All active Bph Dox mutants showed altered regiospecificity with 2,2′-dichlorobiphenyl and 2,5,4′-trichlorobiphenyl. The Thr376Gly, Thr376Val, Thr376Phe, and Thr376Asp Bph Dox mutants introduced molecular oxygen at the 2,3 position of 2,2′-dichlorobiphenyl, forming 2-chloro-2′,3′-dihydroxybiphenyl with concomitant dechlorination. The Bph Dox mutants of Thr376Gly, Thr376Ser, Thr376Asp, and Thr376Lys attacked 2,5,4′-trichlorobiphenyl via both 2′,3′- and 3,4-dioxygenation activities. In particular, the Thr376Phe Bph Dox mutant exhibited enhanced and expanded degradation activities toward all of the compounds tested. Further site-directed mutation was induced to change the oxidizing character of KF707 Bph Dox to that of the Bph Dox of Burkholderia xenovorans LB400 by the substitution of two amino acids, Ile335Phe and Thr376Asn, near the active-site.Electronic supplementary material Supplementary material is available in the online version of this article at .  相似文献   

15.
The biphenyl dioxygenase of Burkholderia xenovorans LB400 is a multicomponent Rieske-type oxygenase that catalyzes the dihydroxylation of biphenyl and many polychlorinated biphenyls (PCBs). The structural bases for the substrate specificity of the enzyme's oxygenase component (BphAELB400) are largely unknown. BphAEp4, a variant previously obtained through directed evolution, transforms several chlorobiphenyls, including 2,6-dichlorobiphenyl, more efficiently than BphAELB400, yet differs from the parent oxygenase at only two positions: T335A/F336M. Here, we compare the structures of BphAELB400 and BphAEp4 and examine the biochemical properties of two BphAELB400 variants with single substitutions, T335A or F336M. Our data show that residue 336 contacts the biphenyl and influences the regiospecificity of the reaction, but does not enhance the enzyme's reactivity toward 2,6-dichlorobiphenyl. By contrast, residue 335 does not contact biphenyl but contributes significantly to expansion of the enzyme's substrate range. Crystal structures indicate that Thr335 imposes constraints through hydrogen bonds and nonbonded contacts to the segment from Val320 to Gln322. These contacts are lost when Thr is replaced by Ala, relieving intramolecular constraints and allowing for significant movement of this segment during binding of 2,6-dichlorobiphenyl, which increases the space available to accommodate the doubly ortho-chlorinated congener 2,6-dichlorobiphenyl. This study provides important insight about how Rieske-type oxygenases can expand substrate range through mutations that increase the plasticity and/or mobility of protein segments lining the catalytic cavity.  相似文献   

16.
The bphK gene located in the bph operon of Burkholderia LB400 encodes a protein, BphKLB400, with significant sequence similarity to glutathione-S-transferases (GST), a group of enzymes involved in the detoxification of many endobiotic and xenobiotic substances. Comparison of the amino acid sequence of BphKLB400 with GST from other polychlorinated biphenyl (PCB)-degrading bacteria identified a number of highly conserved amino acids in the C-terminal region of the protein that may be associated with substrate specificity. In this study, two of these conserved amino acids in BphKLB400 (amino acids 152 and 180) were selected for mutation, using site-directed mutagenesis, and substrate specificity assays. BphKLB400 (wildtype and mutant) was over-expressed in Escherichia coli where the bphK gene (wildtype and mutant) is under the expression of a lac promoter and is induced by isopropyl thiogalactoside, and bacterial cell extracts were prepared for GST activity assays. Mutations at amino acids 152 and 180 were shown to affect GST activity of BphKLB400 using 1-chloro-2,4-dinitrobenzene, the model substrate for GST activity assays; 4-chlorobenzoate and 3-chlorobenzoate, intermediates in the polychlorinated biphenyl (PCB) degradation pathway, and 2,4-dichlorophenoxyacetate and atrazine, commonly used herbicides; as substrates. A BphKLB400 mutant (Ala180Pro) is identified in this study as having increased activity towards all substrates tested. This mutant may have potential in bioremediation.  相似文献   

17.
The bphK gene located in the bph operon of Burkholderia LB400 encodes a protein, BphKLB400, with significant sequence similarity to glutathione-S-transferases (GST), a group of enzymes involved in the detoxification of many endobiotic and xenobiotic substances. Comparison of the amino acid sequence of BphKLB400 with GST from other polychlorinated biphenyl (PCB)-degrading bacteria identified a number of highly conserved amino acids in the C-terminal region of the protein that may be associated with substrate specificity. In this study, two of these conserved amino acids in BphKLB400 (amino acids 152 and 180) were selected for mutation, using site-directed mutagenesis, and substrate specificity assays. BphKLB400 (wildtype and mutant) was over-expressed in Escherichia coli where the bphK gene (wildtype and mutant) is under the expression of a lac promoter and is induced by isopropyl thiogalactoside, and bacterial cell extracts were prepared for GST activity assays. Mutations at amino acids 152 and 180 were shown to affect GST activity of BphKLB400 using 1-chloro-2,4-dinitrobenzene, the model substrate for GST activity assays; 4-chlorobenzoate and 3-chlorobenzoate, intermediates in the polychlorinated biphenyl (PCB) degradation pathway, and 2,4-dichlorophenoxyacetate and atrazine, commonly used herbicides; as substrates. A BphKLB400 mutant (Ala180Pro) is identified in this study as having increased activity towards all substrates tested. This mutant may have potential in bioremediation.  相似文献   

18.
In this work, we examined the profile of metabolites produced from the doubly para-substituted biphenyl analogs 4,4′-dihydroxybiphenyl, 4-hydroxy-4′-chlorobiphenyl, 3-hydroxy-4,4′-dichlorobiphenyl, and 3,3′-dihydroxy-4,4′-chlorobiphenyl by biphenyl-induced Pandoraea pnomenusa B356 and by its biphenyl dioxygenase (BPDO). 4-Hydroxy-4′-chlorobiphenyl was hydroxylated principally through a 2,3-dioxygenation of the hydroxylated ring to generate 2,3-dihydro-2,3,4-trihydroxy-4′-chlorobiphenyl and 3,4-dihydroxy-4′-chlorobiphenyl after the removal of water. The former was further oxidized by the biphenyl dioxygenase to produce ultimately 3,4,5-trihydroxy-4′-chlorobiphenyl, a dead-end metabolite. 3-Hydroxy-4,4′-dichlorobiphenyl was oxygenated on both rings. Hydroxylation of the nonhydroxylated ring generated 2,3,3′-trihydroxy-4′-chlorobiphenyl with concomitant dechlorination, and 2,3,3′-trihydroxy-4′-chlorobiphenyl was ultimately metabolized to 2-hydroxy-4-chlorobenzoate, but hydroxylation of the hydroxylated ring generated dead-end metabolites. 3,3′-Dihydroxy-4,4′-dichlorobiphenyl was principally metabolized through a 2,3-dioxygenation to generate 2,3-dihydro-2,3,3′-trihydroxy-4,4′-dichlorobiphenyl, which was ultimately converted to 3-hydroxy-4-chlorobenzoate. Similar metabolites were produced when the biphenyl dioxygenase of Burkholderia xenovorans LB400 was used to catalyze the reactions, except that for the three substrates used, the BPDO of LB400 was less efficient than that of B356, and unlike that of B356, it was unable to further oxidize the initial reaction products. Together the data show that BPDO oxidation of doubly para-substituted hydroxychlorobiphenyls may generate nonnegligible amounts of dead-end metabolites. Therefore, biphenyl dioxygenase could produce metabolites other than those expected, corresponding to dihydrodihydroxy metabolites from initial doubly para-substituted substrates. This finding shows that a clear picture of the fate of polychlorinated biphenyls in contaminated sites will require more insights into the bacterial metabolism of hydroxychlorobiphenyls and the chemistry of the dihydrodihydroxylated metabolites derived from them.  相似文献   

19.
Burkholderia xenovorans LB400是一株多氯联苯(polychlorinated biphenyls,PCBs)降解菌,可以氧化含有1?6个氯取代基的多氯联苯。近年来,由于其广泛的底物谱和优异的降解性能,菌株LB400已成为研究原核生物降解多氯联苯的生物化学和分子生物学方面的模式生物。目前关于PCBs的微生物降解研究已不再局限于对微生物资源的挖掘,而是更多地聚焦在LB400等降解菌的PCBs降解基因、降解酶的酶学特性以及酶的人工分子进化等方面。同时,LB400作为早期发现的降解菌,其对多氯联苯的降解途径、底物范围及相关机制也被广泛探讨;但是对于PCBs降解相关基因的调控研究较少。因此,本文以Burkholderia xenovorans LB400对多氯联苯降解为核心,通过综述其代谢途径、代谢相关基因和酶系以及降解应用等方面的研究进展,以期为深入探讨Burkholderia xenovorans LB400的应用以及进一步在遗传、分子和生化水平研究其他多氯联苯降解菌株提供借鉴。  相似文献   

20.
2,2'-Dichlorobiphenyl (CB) is transformed by the biphenyl dioxygenase of Burkholderia xenovorans LB400 (LB400 BPDO) into two metabolites (1 and 2). The most abundant metabolite, 1, was previously identified as 2,3-dihydroxy-2'-chlorobiphenyl and was presumed to originate from the initial attack by the oxygenase on the chlorine-bearing ortho carbon and on its adjacent meta carbon of one phenyl ring. 2,3,2',3'-Tetrachlorobiphenyl is transformed by LB400 BPDO into two metabolites that had never been fully characterized structurally. We determined the precise identity of the metabolites produced by LB400 BPDO from 2,2'-CB and 2,3,2',3'-CB, thus providing new insights on the mechanism by which 2,2'-CB is dehalogenated to generate 2,3-dihydroxy-2'-chlorobiphenyl. We reacted 2,2'-CB with the BPDO variant p4, which produces a larger proportion of metabolite 2. The structure of this compound was determined as cis-3,4-dihydro-3,4-dihydroxy-2,2'-dichlorobiphenyl by NMR. Metabolite 1 obtained from 2,2'-CB-d(8) was determined to be a dihydroxychlorobiphenyl-d(7) by gas chromatographic-mass spectrometric analysis, and the observed loss of only one deuterium clearly shows that the oxygenase attack occurs on carbons 2 and 3. An alternative attack at the 5 and 6 carbons followed by a rearrangement leading to the loss of the ortho chlorine would have caused the loss of more than one deuterium. The major metabolite produced from catalytic oxygenation of 2,3,2',3'-CB by LB400 BPDO was identified by NMR as cis-4,5-dihydro-4,5-dihydroxy-2,3,2',3'-tetrachlorobiphenyl. These findings show that LB400 BPDO oxygenates 2,2'-CB principally on carbons 2 and 3 and that BPDO regiospecificity toward 2,2'-CB and 2,3,2,',3'-CB disfavors the dioxygenation of the chlorine-free ortho-meta carbons 5 and 6 for both congeners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号