首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Statistical characterization of nucleic acid sequence functional domains   总被引:20,自引:14,他引:6  
It has long been recognized that various genome classes were distinguishable on the basis of base composition and nearest neighbor frequencies. In addition Grantham et al. (8) have recently presented evidence that these distinctions are preserved at the level of codon usage. As discussed in this report it is now clear that these and related statistics can uniquely characterize the various functional domains of the genome. In particular peptide coding, intervening segments, structural RNA coding and mitochondrial domains of the vertebrate genome are uniquely characterizable. The statistical measures not only reflect understood functional differences among these domains but suggest others. The ability of these simple statistics of nucleic acid sequences to reflect so much of the encoded complex pattern information and/or effects of selective constraints is somewhat surprising. Here, we investigated the statistical measures most distinctive of the various domains and then linked them to our current understandings in so far as possible.  相似文献   

2.
Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression.  相似文献   

3.
Traditional proteomics methodology allows global analysis of protein abundance but does not provide information on the regulation of protein activity. Proteases, in particular, are known for their multilayered post-translational activity regulation that can lead to a significant difference between protease abundance levels and their enzyme activity. To address these issues, the field of activity-based proteomics has been established in order to characterize protein activity and monitor the functional regulation of enzymes in complex proteomes. In this review, we present structural features of activity-based probes for proteases and discuss their applications in proteomic profiling of various catalytic classes of proteases.  相似文献   

4.
Traditional proteomics methodology allows global analysis of protein abundance but does not provide information on the regulation of protein activity. Proteases, in particular, are known for their multilayered post-translational activity regulation that can lead to a significant difference between protease abundance levels and their enzyme activity. To address these issues, the field of activity-based proteomics has been established in order to characterize protein activity and monitor the functional regulation of enzymes in complex proteomes. In this review, we present structural features of activity-based probes for proteases and discuss their applications in proteomic profiling of various catalytic classes of proteases.  相似文献   

5.
6.
Secretins form large oligomeric assemblies in the membrane that control both macromolecular secretion and uptake. Several Pasteurellaceae are naturally competent for transformation, but the mechanism for DNA assimilation is largely unknown. In Haemophilus influenzae, the secretin ComE has been demonstrated to be essential for DNA uptake. In closely related Aggregatibacter actinomycetemcomitans, an opportunistic pathogen in periodontitis, the ComE homolog HofQ is believed to be the outer membrane DNA translocase. Here, we report the structure of the extra-membranous domains of HofQ at 2.3 Å resolution by X-ray crystallography. We also show that the extra-membranous domains of HofQ are capable of DNA binding. The structure reveals two secretin-like folds, the first of which is formed by means of a domain swap. The second domain displays extensive structural similarity to K homology (KH) domains, including the presence of a GxxG motif, which is essential for the nucleotide-binding function of KH domains, suggesting a possible mechanism for DNA binding by HofQ. The data indicate a direct involvement in DNA acquisition and provide insight into the molecular basis for natural competence.  相似文献   

7.
8.
The discovery of circulating nucleic acids in the 1940s opened up new possibilities for the non-invasive detection, monitoring and screening of various human disorders. Several tumour markers that enable early cancer detection or tumour behaviour prediction have been detected in the plasma of cancer patients. Maternal plasma analysis can be used to detect certain fetal abnormalities, with the quantification of cell-free nucleic acids used to screen for several pregnancy-associated disorders. Some other applications are in transplant monitoring and graft rejection assessment, and in certain medical emergencies such as trauma and burn severity stratification. Many studies have yielded promising results in this field, but the techniques have yet to be applied in routine clinical practice. Large-scale studies using similar technologies and a broad spectrum of patients are still needed to verify the results of the various studies.  相似文献   

9.
We present a unified algorithm to analyze distances between short oligomers in large collections of nucleic acids and protein sequences (DISTANP). This extended version of DISTAN methodology not only permits analysis of distances between selected pairs of oligomers, but also allows a user to analyze distances between groups of residues (such as acidic and hydrophobic amino acids). This capacity allows differentiation of sequence properties of known functional domains in nucleic acids and proteins.  相似文献   

10.
The heterogeneous nuclear ribonucleoprotein (hnRNP) K homology (KH) domain is an evolutionarily conserved module that binds short ribonucleotide sequences. KH domains most often are present in multiple copies per protein. In vitro studies of hnRNP K and other KH domain bearing proteins have yielded conflicting results regarding the relative contribution of each KH domain to the binding of target RNAs. To assess this RNA-binding we used full-length hnRNP K, its fragments and the yeast ortholog as baits in the yeast three-hybrid system. The results demonstrate that in this heterologous in vivo system, the three KH domains bind RNA synergistically and that a single KH domain, in comparison, binds RNA weakly.  相似文献   

11.
Fluorescence resonance energy transfer is a spectroscopic method that provides distance information on macromolecules in solution in the range 20-80 A. It is particularly suited to the analysis of the global structure of nucleic acids because the long-range distance information provides constraints when modelling these important structures. The application of fluorescence resonance energy transfer to nucleic acid structure has seen a resurgence of interest in the past decade, which continues to increase. An especially exciting development is the recent extension to single-molecule studies.  相似文献   

12.
13.
ScanMoment is a webserver designed to identify the presence of the basic faced α‐helix (BFAH) motif in the nucleic acid binding sites of proteins. The program calculates the ’Basic Moment‘, a parameter that quantitizes the distribution of basic residues on the surface of an α‐helix. A sliding window is used to generate a plot displaying regions of the protein sequence that possesses a high Basic Moment and hus likely to possess a BFAH motif. The user may vary the periodicity from that of an alpha‐helix (100°), to those of other secondary structures such as beta sheets and 310 helices. The program can also plot the periodicity of basic residues in a protein sequence using a Fourier transformation. The procedure has been used to characterize the presence of BFAHs in the N‐terminal extensions of the eukaryotic aminoacyl‐tRNA synthetases and to indicate the presence of a BFAH in the tRNA binding site of alanyl‐tRNA synthetase.  相似文献   

14.
Xenopus Vg1 mRNA is localized to the vegetal cortex during oogenesis in a process involving microtubules and microfilaments and proteins that specifically recognize the vegetal localization element (VLE) within the 3' untranslated region. One of the best characterized VLE-binding proteins is Vg1RBP or Vera. Primary sequence analysis of Vg1RBP and its homologs suggests that most of its open reading frame is occupied by RNA-binding modules, including two RRMs and four KH domains, arranged as three pairs of didomains. In the first detailed domain analysis of Vg1RBP, we show that the interaction of Vg1RBP with the VLE requires both KH didomains, but not the RRM didomain, and moreover that the KH didomains contribute cooperatively to RNA binding. In the full-length protein, individual KH domains display significant redundancy, and their relative importance appears to vary with the RNA target. We also demonstrate that the KH34 didomain mediates Vg1RBP self-association, which is stabilized by RNA, and occurs in vivo as well as in vitro. Altogether, our findings highlight the importance of multiple KH domains in mediating RNA-protein and protein-protein interactions in the formation of a stable complex of Vg1RBP and Vg1 mRNA.  相似文献   

15.
A protein blotting technique was used to identify a 57,000 dalton cytosolic nucleic-acid-binding protein found in neoplastically transformed cell lines. Specifically, greater amounts of this protein were found in Kirsten Murine Sarcoma Virus-, Simian Virus 40-, and methylcholanthrene-transformed Balb 3T3 cells than in comparable untransformed cells. An analogous protein was identified in other transformed mammalian cells. Increased levels of the DNA binding protein in sarcoma virus transformants were shown to be dependent on the continued maintenance of the transformed phenotype. The properties of this protein are compared to those of other previously reported nucleic acid binding proteins.  相似文献   

16.
A glycoprotein which binds to nucleic acids has now been purified from Ustilago maydis until free from detectable deoxyribonuclease activity. It binds to a variety of substrates and in doing so, makes them soluble in dilute trichloroacetic acid. Physical studies suggest that it forms a variety of aggregates under low ionic strength, but at high ionic strength the monomer consists of a single polypeptide chain. Preliminary experiments have detected this novel binding activity in bacterial, fungal and mammalian cells.  相似文献   

17.
《TARGETS》2003,2(3):93-100
RNA interference (RNAi) has the potential to accelerate greatly the pace of discovery biology. The active RNAi intermediate is the small interfering RNA (siRNA), a discrete nucleic acid duplex that can be generated by several methods and used to directly silence gene expression. The choice of methods employed depends largely on the research or therapeutic objective. In most cases, rational design offers several advantages over random design, including greater predictability of function, higher silencing potency and longer duration of suppression. Of the production methods, chemical synthesis provides the fastest production capability, the highest purity and the easiest scalability for high-throughput strategies. Effective coupling of several methods gives the greatest potential for the application of RNAi across functional genomic and target validation studies. Furthermore, the coupling of RNAi with cellular profiling technologies will provide opportunities to streamline drug discovery significantly.  相似文献   

18.
The helical structures of DNA and RNA were originally revealed by experimental data. Likewise, the development of programs for modeling these natural polymers was guided by known structures. These nucleic acid polymers represent only two members of a potentially vast class of polymers with similar structural features, but that differ from DNA and RNA in the backbone or nucleobases. Xeno nucleic acids (XNAs) incorporate alternative backbones that affect the conformational, chemical, and thermodynamic properties of XNAs. Given the vast chemical space of possible XNAs, computational modeling of alternative nucleic acids can accelerate the search for plausible nucleic acid analogs and guide their rational design. Additionally, a tool for the modeling of nucleic acids could help reveal what nucleic acid polymers may have existed before RNA in the early evolution of life. To aid the development of novel XNA polymers and the search for possible pre-RNA candidates, this article presents the proto-Nucleic Acid Builder (https://github.com/GT-NucleicAcids/pnab), an open-source program for modeling nucleic acid analogs with alternative backbones and nucleobases. The torsion-driven conformation search procedure implemented here predicts structures with good accuracy compared to experimental structures, and correctly demonstrates the correlation between the helical structure and the backbone conformation in DNA and RNA.  相似文献   

19.
20.
Measuring the binding of antibiotics and other small-molecular-weight ligands to the 2.5 MDa ribosome often presents formidable challenges. Here, we describe a general method for studying binding of ligands to ribosomes that carry a site-specific fluorescent label covalently attached to one of the ribosomal proteins. As a proof of principle, an environment-sensitive fluorescent group was placed at several specific sites within the ribosomal protein S12. Small ribosomal subunits were reconstituted from native 16S rRNA, individually purified small subunit proteins, and fluorescently labeled S12. The fluorescence characteristics of the reconstituted subunits were affected by several antibiotics, including streptomycin and neomycin, which bind in the vicinity of protein S12. The equilibrium dissociation constants of the drugs obtained using a conventional fluorometer were in good agreement with those observed using previously published methods and with measurements based on the use of radiolabeled streptomycin. The newly developed method is rapid and sensitive, and can be used for determining thermodynamic and kinetic binding characteristics of antibiotics and other small ribosomal ligands. The method can readily be adapted for use in high-throughput screening assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号