首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Long noncoding RNA (lncRNA) AGAP2 antisense RNA 1 (AGAP2-AS1) has been suggested to function as an oncogenic lncRNA in lung cancer, breast cancer, and anaplastic glioma. However, the expression pattern and molecular mechanism of AGAP2-AS1 in glioblastoma multiforme (GBM) remains unknown. The purpose of this study is to present more evidence about the clinical and biological function of AGAP2-AS1 in GBM. In our results, we found AGAP2-AS1 expression was increased in GBM compared with adjacent normal brain tissues or low-grade glioma tissues, and there was no significantly different between low-grade glioma tissues and normal tissues. Kaplan-Meier survival analysis indicated patients with GBM having high-expression of AGAP2-AS1 had shorter overall survival time than those with low expression of AGAP2-AS1. The loss-of-function studies showed that downregulation of AGAP2-AS1 depressed cell proliferation, migration, and invasion, and promoted cell apoptosis in GBM. In summary, AGAP2-AS1 is a prognostic biomarker for patients with GBM, and functions as an oncogenic lncRNA to modulate GBM cell proliferation, apoptosis, migration, and invasion, which suggests that AGAP2-AS1 is potential therapeutic target for GBM.  相似文献   

3.
The protein chip surface enhanced laser desorption/ionisation (SELDI) technique is a highly versatile analytical mass spectrometry system with considerable potential for detection, identification and quantitation of protein complex mixtures. Astrocytoma is a tumour of the astrocytes with a very poor prognosis. There is no effective biomarker system for detection of astrocytoma. The SELDI technique was used to study differential protein expression in astrocytoma cells in comparison to normal brain astrocytes. Several novel proteins were found to be expressed in the astrocytoma cells, not present in the astrocytes.  相似文献   

4.

Purpose

To establish the frequency of IDH1 mutations and MGMT methylation in primary glioblastomas.

Experimental design

We screened primary glioblastoma multiforme (GBM) in a population-based study for IDH1 mutations and MGMT methylation and correlated them with clinical data.

Results

IDH1 mutations were detected in 5 of 40 primary glioblastomas (12,5%). Primary GBM patients carrying IDH1 mutations were significantly younger, mean age of 41 ± 5.06 years, than patients with wild-type IDH1, mean age of 57 ± 2,29 years, p = 0.011. The mean survival time of all GBM patients with and without IDH1 mutations was 19 months (5 cases) and 16 months (35 cases), respectively (p > 0,05). MGMT methylation was detected in 13 of the 40 patients (32,5%). MGMT-promoter methylation did not correlate with overall survival (OS; p > 0,05).

Conclusion

In summary, our study is the first study to investigate the IDH1 mutation status and MGMT methylation in primary GBMs in Turkish population and confirmed IDH1 mutation as a genetic marker for also primary GBMs. Our data are still insufficient for definite ascertainment; and our preliminary results suggest: IDH1 status shows an association with younger age and there is a lack of association between IDH1 mutation and survival time. Furthermore MGMT promoter methylation had no prognostic value and lower frequency in primary glioblastomas.  相似文献   

5.
Exosomal proteins are emerging as relevant diagnostic and prognostic biomarkers for cancer. This study was aimed at illustrating the clinical significance of exosomal Copine III (CPNE3) purified from the plasma of colorectal cancer (CRC) patients. The CPNE3 expression levels in CRC tissues were analyzed by real-time PCR, western blot, and immunohistochemistry. Plasma exosomes were isolated to examine the CPNE3 level using ELISA. Pearson’s correlation analysis was performed to investigate the CPNE3 levels between CRC tissues and matched plasma samples. Receiver operating characteristic curve analysis was developed to measure the diagnostic performance of exosomal CPNE3. The Kaplan–Meier method and Cox's proportional hazards model were utilized to determine statistical differences in survival times. CPNE3 showed increased expressions in the CRC tissues. A moderately significant correlation was found between CPNE3 expression in CRC tissues by immunohistochemistry and matched serum exosomal CPNE3 expression by ELISA (r = 0.645,(r = 0.645, p < 0.001). < 0.001). Exosomal CPNE3 yielded a sensitivity of 67.5% and a specificity of 84.4% in CRC at the cutoff value of 0.143 pg per 1ug1 ug exosome. Combined data from carcinoembryonic antigen and exosomal CPNE3 achieved 84.8% sensitivity and 81.2% specificity as a diagnostic tool. CRC patients with lower exosomal CPNE3 levels had substantially better disease-free survival (hazard ratio [HR], 2.9; 95% confidence interval [CI]: 1.3–6.4; p = 0.009) = 0.009) and overall survival (HR, 3.4; 95% CI: 1.2–9.9; p = 0.026) = 0.026) compared with those with higher exosomal CPNE3 levels. Exosomal CPNE3 show potential implications in CRC diagnosis and prognosis.  相似文献   

6.
7.
BackgroundGlioblastoma multiforme (GBM) is the most malignant type of glioma. GBM tumors grow rapidly, have a high degree of malignancy, and are characterized by a fast disease progression. Unfortunately, there is a lack of effective treatments. An effective strategy for the treatment of GBM would be to identify key biomarkers correlating with the occurrence and progression of GBM and developing these biomarkers into therapeutic targets.Method and ResultsIn this study, using integrated bioinformatics analysis, we identified differentially expressed genes (DEGs), including 130 genes that were upregulated in GBM compared to normal brain tissue, and 128 genes that were downregulated in GBM. Based on Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis, these genes were associated with regulation of tumor cell adhesion, differentiation, morphology in GBM and were mainly enriched in Complement and coagulation cascades pathway. The Search Tool for the Retrieval of Interacting Genes (STRING) database was used to construct a Protein-Protein Interaction network. Ten hub genes were identified, including FN1, CD44, MYC, CDK1, SERPINE1, COL3A1, COL1A2, LOX, POSTN and EZH2, all of which were significantly upregulated in GBM, these results were confirmed by oncomine database exploration. Alteration analysis of hub genes found that patients with alteration in at least one of the hub genes showed shorter median survival times (p = 0.013) and shorter median disease-free survival times (p = 2.488E-3) than patients without alterations in any of the hub genes. Multiple tests for survival analysis showed that among individual hub genes only expression of LOX was correlated with patient survival (P < 0.05).GDS4467 data set was used to analyze the expression of LOX in gliomas with different degrees of malignancy, and it was found that the expression level of LOX was positively correlated with the malignant degree of gliomas.By analyzing GDS 4535 data set showed that the expression level of LOX was positively correlated with the differentiation degree of GBM cellsConclusionThis research suggests that FN1, CD44, MYC, CDK1, SERPINE1, COL3A1, COL1A2, LOX, POSTN and EZH2 are key genes in GBM. However, only LOX is correlated with patient survival and promotes glioblastoma cell differentiation and tumor recurrence. LOX may be a candidate prognostic biomarker and potential therapeutic target for GBM.  相似文献   

8.
9.
Although various studies have demonstrated that growth differentiation factor 15 (GDF15) might be a potential diagnostic and prognostic marker in colorectal cancer (CRC) patients, the results are inconsistent and the statistical power of individual studies is also insufficient. An original study was conducted to explore the diagnostic and prognostic value of serum GDF15 in CRC patients. We also conducted a meta‐analysis study which aimed to summarize the diagnostic and prognostic performance of serum GDF15 in CRC. We searched PubMed and ISI Web of Knowledge up to 1 November 2014 for eligible studies. In order to explore the diagnostic performance of GDF15, standardized mean difference (SMD) and their 95% confidence intervals (CI) were estimated and receiver‐operating characteristic (ROC) curves were constructed. For prognostic meta‐analysis, study‐specific hazard ratios (HRs) of serum GDF15 for survival were summarized. A total of eight studies were included in the meta‐analyses. Our results revealed that serum GDF15 levels in CRC patients were higher than those in healthy controls (SMD = 1.08, 95% CI: 0.56–1.59, P < 0.001). For discriminating CRC from healthy controls, the AUC of GDF15 was 0.816 (95% CI: 0.792–0.838). The sensitivity and specificity were 58.9% (95% CI: 55.0–62.8) and 92.08% (95% CI: 89.2–94.4), respectively, when a cut‐off value of 1099 pg/ml was established. Besides, higher GDF15 expression level was associated with worse overall survival for CRC patients (pooled HR = 2.09, 95% CI: 1.47–2.96). In conclusion, the present meta‐analysis suggests that serum GDF15 may be a useful diagnostic and prognostic biomarker for CRC.  相似文献   

10.
Flotillin-1(FLOT1) has long been recognized as a tumour-promoting gene in several types of cancer. However, the expression and function of FLOT1 in glioblastomas (GBM) has not been elucidated. Here, in this study, we find that the expression level of FLOT1 in GBM tissue was much higher than that in normal brain, and the expression was even higher in the more aggressive subtypes and IDH status of glioma. Kaplan–Meier survival revealed that high FLOT1 expression is closely associated with poor outcome in GBM patients. FLOT1 knockdown markedly reduced the proliferation, migration and invasiveness of GBM cells, while FLOT1 overexpression significantly increases GBM cell proliferation, migration and invasiveness. Mechanistically, FLOT1 expression may play a potential role in the microenvironment of GBM. Therefore, FLOT1 promotes GBM proliferation and invasion in vitro and in vivo and may serve as a biomarker of prognosis and therapeutic potential in the fight against GBM.  相似文献   

11.
Background: Although weak SWI/SNF related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1) expression is a known diagnostic and prognostic biomarker in several malignancies, its expression and clinical significance in osteosarcoma remain unknown. The aim of the present study was to investigate SMARCB1 expression in osteosarcoma and its clinical significance with respect to chemosensitivity and prognosis.Methods: We obtained 114 specimens from 70 osteosarcoma patients to construct a tissue microarray (TMA) and assess SMARCB1 protein expression via immunohistochemistry (IHC). The mRNA expression of SMARCB1 was in-silico analyzed using open-access RNA sequencing (RNA-Seq) and clinicopathological data provided by the Therapeutically Applicable Research to Generate Effective Treatments on Osteosarcoma (TARGET-OS) project. The correlations between SMARCB1 expression and clinical features were statistically analyzed.Results: Weak SMARCB1 expression occurred in 70% of the osteosarcoma patient specimens in the TMA, and significantly correlated with poor neoadjuvant response as well as shorter overall and progression-free survival (PFS). In addition, mRNA in-silico analysis confirmed that SMARCB1 expression correlates with chemotherapeutic response and prognosis in osteosarcoma patients.Conclusion: To our knowledge, the present study is the first to analyze SMARCB1 expression in osteosarcoma. SMARCB1 may serve as a novel diagnostic and prognostic biomarker in osteosarcoma.  相似文献   

12.
Tan F  Jiang Y  Sun N  Chen Z  Lv Y  Shao K  Li N  Qiu B  Gao Y  Li B  Tan X  Zhou F  Wang Z  Ding D  Wang J  Sun J  Hang J  Shi S  Feng X  He F  He J 《Molecular & cellular proteomics : MCP》2012,11(2):M111.008821
Lung cancer is the leading cause of cancer-related death in the world. To explore tumor biomarkers for clinical application, two-dimensional fluorescence difference gel electrophoresis and subsequent MALDI-TOF/TOF mass spectrometry were performed to identify proteins differentially expressed in 12 pairs of lung squamous cell tumors and their corresponding normal tissues. A total of 28 nonredundant proteins were identified with significant alteration in lung tumors. The up-regulation of isocitrate dehydrogenase 1 (IDH1), superoxide dismutase 2, 14-3-3ε, and receptor of activated protein kinase C1 and the down-regulation of peroxiredoxin 2 in tumors were validated by RT-PCR and Western blot analysis in independent 15 pairs of samples. Increased IDH1 expression was further verified by the immunohistochemical study in extended 73 squamous cell carcinoma and 64 adenocarcinoma clinical samples. A correlation between IDH1 expression and poor overall survival of non-small cell lung cancer (NSCLC) patients was observed. Furthermore, ELISA analysis showed that the plasma level of IDH1 was significantly elevated in NSCLC patients compared with benign lung disease patients and healthy individuals. In addition, knockdown of IDH1 by RNA interference suppressed the proliferation of NSCLC cell line and decreased the growth of xenograft tumors in vivo. These observations suggested that IDH1, as a protein promoting tumor growth, could be used as a plasma biomarker for diagnosis and a histochemical biomarker for prognosis prediction of NSCLC.  相似文献   

13.
Calreticulin (CRT) is an endoplasmic reticulum luminal Ca(2+)-binding chaperone protein. By immunizing mice with recombinant fragment (rCRT/39-272), six clones of monoclonal antibodies (mAbs) were generated and characterized. Based on these mAbs, a microplate chemiluminescent enzyme immunoassay (CLEIA) system with a measured limit of detection of 0.09?ng/ml was developed. Using this CLEIA system, it was found that soluble CRT (sCRT) level in serum samples from 58 lung cancer patients was significantly higher than that from 40 healthy individuals (only 9 were detectable, P?相似文献   

14.
Background: The relationship between microRNA-21 (miRNA-21) and pathogenesis of lung cancer is a considerable focus of research interest. However, to our knowledge, no in-depth meta-analyses based on existing evidence to ascertain the value of miRNA-21 in diagnosis and clinical prognosis of lung cancer have been documented.Methods: We comprehensively searched all the literature pertaining to ‘miRNA-21’ and ‘lung cancer’ from four databases from the period of inception of each database until May 2020. Using specific inclusion and exclusion criteria, the literature for inclusion was identified and the necessary data extracted.Results: In total, 46 articles were included in the meta-analysis, among which 31 focused on diagnostic value and 15 on prognostic value. Combined sensitivity (SEN) of miRNA-21 in diagnosis of lung cancer was 0.77 (95% confidence interval (CI): 0.72–0.81), specificity (SPE) was 0.86 (95% CI: 0.80–0.90), diagnostic odds ratio (DOR) was (95% CI: 12–33), and area under the SROC curve (AUC) was 0.87 (95% CI: 0.84–0.90). No significant correlations were observed between abnormal expression of miRNA-21 and gender, smoking habits, pathological type and clinical stage of lung cancer (P>0.05). In terms of overall survival (OS), univariate analysis (hazards ratio (HR) = 1.49, 95% CI: 1.22–1.82) revealed high expression of miRNA-21 as an influencing factor for lung cancer. MiRNA-21 was confirmed as an independent risk factor for poor prognosis in multivariate analysis (HR = 1.65, 95% CI: 1.24–2.19).Conclusion: MiRNA-21 has potential clinical value in the diagnosis and prognosis of lung cancer and may serve as an effective diagnostic marker and therapeutic target in the future.  相似文献   

15.
Breast cancer is the most common cancer in women, with a general upward trend in incidence. Basic and clinical breast cancer research has continued at a rapid pace, in the endeavor to understand the biology of the disease so as to improve management of patients. Besides traditional pathological indicators, expression of molecular markers in breast cancer has also been comprehensively investigated. This paper will focus on the prognostic utility of metallothioneins (MTs), a family of low molecular weight metal binding proteins encoded by at least 10 functional MT genes that are associated with cell proliferation in breast cancer. Evidence that MT is a potential prognostic biomarker for breast cancer is supported by many reports in the literature. Expression of the MT protein has been detected by immunohistochemistry in a significant portion of invasive ductal breast cancers. MT expression has also been well studied in association with traditional clinico-pathological parameters of breast cancers. Generally, higher MT expression in breast cancers is predictive of worse patient outcomes. The relationship of MT isoforms to histological grade, estrogen receptor (ER) status, and prognosis will also be discussed.  相似文献   

16.
17.
Flotillin‐1(FLOT1) has long been recognized as a tumour‐promoting gene in several types of cancer. However, the expression and function of FLOT1 in glioblastomas (GBM) has not been elucidated. Here, in this study, we find that the expression level of FLOT1 in GBM tissue was much higher than that in normal brain, and the expression was even higher in the more aggressive subtypes and IDH status of glioma. Kaplan–Meier survival revealed that high FLOT1 expression is closely associated with poor outcome in GBM patients. FLOT1 knockdown markedly reduced the proliferation, migration and invasiveness of GBM cells, while FLOT1 overexpression significantly increases GBM cell proliferation, migration and invasiveness. Mechanistically, FLOT1 expression may play a potential role in the microenvironment of GBM. Therefore, FLOT1 promotes GBM proliferation and invasion in vitro and in vivo and may serve as a biomarker of prognosis and therapeutic potential in the fight against GBM.  相似文献   

18.
Accumulating evidence has shown that miR‐429 plays an important role in the development and progression of tumour. However, the role of miR‐429 in glioblastoma multiforme (GBM) remains largely unknown. The present study is designed to investigate the function of miR‐429 in GBM and to explore the molecular mechanism underlying its function. The expression level of miR‐429 was detected in GBM tissues and cell lines by quantitative real‐time polymerase chain reaction. The effect of overexpression of miR‐429 on in vitro cell proliferation, apoptosis and invasion was examined. Western blot analysis was used to detect the influence of miR‐429 on the expression of target gene, and Pearson analysis was used to calculate the correlation between the expression of targets gene and the miR‐429 in GBM tissues. Our study shows that miR‐429 is downregulated in GBM tissues compared with noncancerous tissues (P < .01). In addition, the expression of miR‐429 in GBM cell lines is also significantly lower (P < .01). Enforced expression of miR‐429 inhibits GBM cells proliferation, induces apoptosis and suppresses invasion and leads to the downregulation of the SOX2 protein. Moreover, the expression level of miR‐429 in GBM tissues shows inverse relationship with the expression level of SOX2 protein. Our findings suggest that miR‐429 represents a potential tumour‐suppressive miRNA and plays an important role in GBM progression by directly targeting SOX2.  相似文献   

19.
The observation that the cyclooxygenase-2 (COX-2) isozyme is over-expressed in multiple types of cancer, relative to that in adjacent non-cancerous tissue, prompted this investigation to prepare a group of hybrid fluorescent conjugates wherein the COX inhibitors ibuprofen, (S)-naproxen, acetyl salicylic acid, a chlororofecoxib analog and celecoxib were coupled via a linker group to an acridone, dansyl or rhodamine B fluorophore. Within this group of compounds, the ibuprofen-acridone conjugate (10) showed potent and selective COX-2 inhibition (COX-2 IC50 = 0.67 μM; SI = 110.6), but its fluorescence emission (λem = 417, 440 nm) was not suitable for fluorescent imaging of cancer cells that over-express the COX-2 isozyme. In comparison, the celecoxib-dansyl conjugate (25) showed a slightly lower COX-2 potency and selectivity (COX-2 IC50 = 1.1 μM; SI > 90) than the conjugate 10, and it possesses a better fluorescence emission (λem = 500 nm). Ultimately, a celecoxib-rhodamine B conjugate (28) that exhibited moderate COX-2 potency and selectivity (COX-2 IC50 = 3.9 μM; SI > 25) having the best fluorescence emission (λem = 580 nm) emerged as the most promising biomarker for fluorescence imaging using a colon cancer cell line that over-expresses the COX-2 isozyme.  相似文献   

20.
In the last couple of decades, biomarkers have been on the rise for diagnostic and predictive value. There has been a rush to identify new markers using new technologies and drug repurposing approaches. SMARCB1 acronym arises from the SWI/SNF (SWItch/Sucrose Non-Fermentable)-related Matrix-associated Actin-dependent Regulator of Chromatin subfamily B member 1 (SMARCB1). It is a molecule, whose role is associated with the sucrose metabolism. SMARCB1 is also called INI1 (Integrase Interactor 1). The molecule was discovered in the mid-1990s. Its role as a loss-of-function marker for malignant rhabdoid tumors (MRT) of renal and extrarenal origin has enormously expanded the spectrum of involved neoplasms since that time. Several tumors have been characterized by genetic aberrations in the SMARCB1 gene. They include reduction in expression, loss of expression, and mosaic expression. Most of the tumors are sarcomas, but a variegated group of tumors with mixed phenotypes has also been delineated. It is well known that the outcome of patients harboring genetic aberrations in the SMARCB1 gene has been poor. Guo et al. reported that reduced SMARCB1 expression occurred in 70% of osteosarcomas. Their data significantly correlated with poor neoadjuvant response. These authors emphasize a shorter progression-free and overall survival of the patients demonstrating an altered expression of this gene. Interestingly, mRNA in silico analysis established that SMARCB1 expression correlates with the response to chemotherapy of osteosarcoma patients, but there was no reliable correlation between SMARCB1 expression level and metastasis, response to neoadjuvant therapy, overall survival, and progression-free survival. The study involved a tissue microarray (TMA) on bone tumors that may limit the full evaluation of the gene expression. Nevertheless, Guo et al.’s study is remarkable. It expands the list of the tumors harboring an altered SMARCB1 gene expression and suggests that this marker should be investigated in every pathology workup for potential predictive value. On the other side, much work needs to be done if we hope that we strive to provide additional therapeutic strategies for osteosarcoma patients with altered SMARCB1 gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号