首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Although the relationship between allergic inflammation and lung carcinogenesis is not clearly defined, several reports suggest an increased incidence of lung cancer in patients with asthma. We aimed at determining the functional impact of allergic inflammation on chemical carcinogenesis in the lungs of mice.

Methods

Balb/c mice received single-dose urethane (1 g/kg at day 0) and two-stage ovalbumin during tumor initiation (sensitization: days -14 and 0; challenge: daily at days 6-12), tumor progression (sensitization: days 70 and 84; challenge: daily at days 90-96), or chronically (sensitization: days -14 and 0; challenge: daily at days 6-12 and thrice weekly thereafter). In addition, interleukin (IL)-5 deficient and wild-type C57BL/6 mice received ten weekly urethane injections. All mice were sacrificed after four months. Primary end-points were number, size, and histology of lung tumors. Secondary end-points were inflammatory cells and mediators in the airspace compartment.

Results

Ovalbumin provoked acute allergic inflammation and chronic remodeling of murine airways, evident by airspace eosinophilia, IL-5 up-regulation, and airspace enlargement. Urethane resulted in formation of atypical alveolar hyperplasias, adenomas, and adenocarcinomas in mouse lungs. Ovalbumin-induced allergic inflammation during tumor initiation, progression, or continuously did not impact the number, size, or histologic distribution of urethane-induced pulmonary neoplastic lesions. In addition, genetic deficiency in IL-5 had no effect on urethane-induced lung tumorigenesis.

Conclusions

Allergic inflammation does not impact chemical-induced carcinogenesis of the airways. These findings suggest that not all types of airway inflammation influence lung carcinogenesis and cast doubt on the idea of a mechanistic link between asthma and lung cancer.  相似文献   

2.
3.
Neuregulin-1 (NRG-1), binding to the human epidermal growth factor receptor HER2/HER3, plays a role in pulmonary epithelial cell proliferation and recovery from injury in vitro. We hypothesized that activation of HER2/HER3 by NRG-1 would also play a role in recovery from in vivo lung injury. We tested this hypothesis using bleomycin lung injury of transgenic mice incapable of signaling through HER2/HER3 due to lung-specific dominant-negative HER3 (DNHER3) expression. In animals expressing DNHER3, protein leak, cell infiltration, and NRG-1 levels in bronchoalveolar lavage fluid increased after injury, similar to that in nontransgenic littermate control animals. However, HER2/HER3 was not activated, and DNHER3 animals displayed fewer lung morphological changes at 10 and 21 days after injury (P = 0.01). In addition, they contained 51% less collagen in injured lungs (P = 0.04). Transforming growth factor-beta1 did not increase in bronchoalveolar lavage fluid from DNHER3 mice compared with nontransgenic littermate mice (P = 0.001), suggesting that a mechanism for the decreased fibrosis was lack of transforming growth factor-beta1 induction in DNHER3 mice. Severe lung injury (0.08 units bleomycin) resulted in 80% mortality of nontransgenic mice, but only 35% mortality of DNHER3 transgenic mice (P = 0.04). Thus inhibition of HER2/HER3 signaling protects against pulmonary fibrosis and improves survival.  相似文献   

4.
The severity and mortality rates of acute pancreatitis (AP) are significantly elevated in the elderly population. However, due to a lack of appropriate animal models, the underlying mechanisms for this age‐dependent vulnerability remain largely unknown. The purpose of this study was to characterize a murine model of AP, which displays age‐associated severity, and to use this model to identify pathophysiologies that are distinctive of the aged with AP. AP was induced in young (4–5 months), middle‐aged (12–13 months), and aged (23–25 months) C57BL/6 mice by repeated injection of caerulein, a homologue of the gastrointestinal hormone cholecystokinin. Approximately 10% of aged mice died during AP, while young and middle‐aged mice showed no mortality. Although both young and aged mice exhibited early signs of edema and inflammation in the pancreas, kidney, and lung, young mice showed signs of recovery within 24 h, while aged mice exhibited increasingly severe tissue damage and cell death. There was a significant age‐dependent increase in pancreatic neutrophil activation and systemic inflammation as assessed by pancreatic myeloperoxidase and plasma interleukin‐6 (IL‐6) concentration, respectively. Importantly, aged but not young mice with AP showed significantly elevated thrombosis in the lung and kidney as well as a marked increase in plasma concentration of plasminogen activator inhibitor‐1 (PAI‐1), a primary inhibitor of the fibrinolytic system. These results demonstrate that aging is associated with increased severity of AP characterized by augmented and prolonged pancreatic inflammation and the presence of multiple extra‐pancreatic sequelae including thrombosis.  相似文献   

5.
6.
Neurodegenerative changes and neuronal death underlie ageing of the nervous system. We investigated the mechanisms of apoptosis in sensorimotor cortical neurons of HER2/neu transgenic mice during ageing, as well as the functional changes in the cortex and the involvement of exogenous neurometabolites (cytoflavin, piracetam) in the regulation of neuronal death and locomotor and psycho-emotional status in mice. The level of apoptosis and expression of the apoptotic protein markers (TUNEL, immunohistochemistry, Western blotting) were detected in HER2/neu transgenic mice versus wild type mice (FBV strain). In ageing wild type mice, the basal activity decreases while the anxiety level increases correlating with the high level of neuronal apoptosis. We revealed specific behavioral features of HER2/neu transgenic mice—their low basal activity which remains intact during ageing. Previously, we have shown that in this mouse strain the level of apoptosis is low, with no age-related dynamics, due to the suppression primarily of the p53-dependent pathway by HER2 (tyrosine kinase receptor) overexpression. Here we show that cytoflavin and piracetam have a pronounced neuroprotective effect, preserving and restoring the nervous system functions (improving locomotion and psychological status) in both mouse strains. The effect of the tested neurometabolites on neuronal apoptosis is ambiguous. In case of low-level apoptosis, there occurs its moderate stimulation in HER2/neu transgenic mice that are characterized by a high level of carcinogenesis (via the extrinsic and p53-dependent pathways with caspase-3 activation) which probably prevents tumor development. By contrast, in aged wild-type mice there is a marked decrease in the level of age-related apoptosis (via the stimulation of antiapoptotic protein Mcl-1 expression) supposed to prevent neurodegeneration.  相似文献   

7.
To address the complex chronic effector properties of interleukin (IL)-10, we generated transgenic mice in which IL-10 was overexpressed in the lung. In these mice, IL-10 inhibited endotoxin-induced tumor necrosis factor production and neutrophil accumulation. IL-10 also caused mucus metaplasia, B and T cell-rich inflammation, and subepithelial fibrosis and augmented the levels of mRNA encoding Gob-5, mucins, and IL-13. In mice bred to have null mutations of IL-13, IL-4R(alpha), or STAT-6, transgenic IL-10 did not induce mucus metaplasia but did induce inflammation and fibrosis. IL-10 was also a critical mucin regulator of virus-induced mucus metaplasia. Thus, IL-10, although inhibiting lipopolysaccharide-induced inflammation, also causes mucus metaplasia, tissue inflammation, and airway fibrosis. These responses are mediated by multiple mechanisms with mucus metaplasia being dependent on and the inflammation and fibrosis being independent of an IL-13/IL-4R(alpha)/STAT-6 activation pathway.  相似文献   

8.
He X  Han B  Mura M  Li L  Cypel M  Soderman A  Picha K  Yang J  Liu M 《PloS one》2008,3(1):e1527

Background

Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS). Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice.

Methodology/Principal Findings

Human tissue factor knock-in (hTF-KI) transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859) were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v.) attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung.

Conclusions

This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies.  相似文献   

9.
10.

Background

TGF-β has been postulated to play an important role in the maintenance of epithelial homeostasis and the development of epithelium-derived cancers. However, most of previous studies are mainly focused on the function of TGF-β in immune cells to the development of allergic asthma and how TGF-β signaling in airway epithelium itself in allergic inflammation is largely unknown. Furthermore, the in vivo TGF-β function specifically in the airway epithelium during lung cancer development has been largely elusive.

Methodology/Principal Findings

To evaluate the in vivo contribution of TGF-β signaling in lung epithelium to the development of allergic disease and lung cancer, we generated a transgenic mouse model with Smad7, an intracellular inhibitor of TGF-β signaling, constitutively expressed in mouse airway Clara cells using a mouse CC10 promoter. The mice were subjected to the development of OVA-induced allergic asthma and urethane-induced lung cancer. The Smad7 transgenic animals significantly protected from OVA-induced asthma, with reduced airway inflammation, airway mucus production, extracellular matrix deposition, and production of OVA-specific IgE. Further analysis of cytokine profiles in lung homogenates revealed that the Th2 cytokines including IL-4, IL-5 and IL-13, as well as other cytokines including IL-17, IL-1, IL-6, IP10, G-CSF, and GM-CSF were significantly reduced in the transgenic mice upon OVA induction. In contrast, the Smad7 transgenic animals had an increased incidence of lung carcinogenesis when subjected to urethane treatment.

Conclusion/Significance

These studies, therefore, demonstrate for the first time the in vivo function of TGF-β signaling specifically in airway epithelium during the development of allergic asthma and lung cancer.  相似文献   

11.

Introduction

SPC-raf and SPC-myc transgenic mice develop disseminated and circumscribed lung adenocarcinoma respectively, allowing for assessment of carcinogenesis and treatment strategies. The purpose of this study was to investigate the technical feasibility, the correlation of initial findings to histology and the administered radiation dose of combined micro-PET/micro-CT in these animal models.

Material and Methods

14 C57BL/6 mice (4 nontransgenic, 4 SPC-raf transgenic, 6 SPC-myc transgenic) were examined using micro-CT and 18F-Fluoro-deoxyglucose micro-PET in-vivo. Micro-PET data was corrected for random events and scatter prior to reconstruction with a 3D-FORE/2D-OSEM iterative algorithm. Rigid micro-PET/micro-CT registration was performed. Tumour-to-non-tumour ratios were calculated for different lung regions and focal lesions. Diffuse tumour growth was quantified using a semiautomated micro-CT segmentation routine reported earlier. Regional histologic tumour load was assessed using a 4-point rating scale. Gamma radiation dose was determined using thermoluminescence dosimeters.

Results

Micro-CT allowed visualisation of diffuse and circumscribed tumours in SPC-raf and SPC-myc transgenic animals along with morphology, while micro-PET provided information on metabolism, but lacked morphologic detail. Mean tumour-to-non-tumour ratio was 2.47 for circumscribed lesions. No significant correlation could be shown between histological tumour load and tumour-to-nontumour ratio for diffuse tumours in SPC-raf transgenic animals. Calculation of the expected dose based on gamma dosimetry yielded approximately 140 mGy/micro-PET examination additional to approximately 200 mGy due to micro-CT.

Conclusions

Combined micro-PET/micro-CT imaging allows for in-vivo assessment of lung tumours in SPC-raf and SPC-myc transgenic mice. The technique has potential for the evaluation of carcinogenesis and treatment strategies in circumscribed lung tumours.  相似文献   

12.
Toll-like receptors are potent activators of the innate immune system and generate signals leading to the initiation of the adaptive immune response that can be utilized for therapeutic purposes. We tested the hypothesis that combined treatment with a Toll-like receptor agonist and an antitumor monoclonal antibody is effective and induces host-protective antitumor immunity. C57BL/6 human mutated HER2 (hmHER2) transgenic mice that constitutively express kinase-deficient human HER2 under control of the CMV promoter were established. These mice demonstrate immunological tolerance to D5-HER2, a syngeneic human HER2-expressing melanoma cell line. This human HER2-tolerant model offers the potential to serve as a preclinical model to test both antibody therapy and the immunization potential of human HER2-targeted therapeutics. Here, we show that E6020, a Toll-like receptor-4 (TLR4) agonist effectively boosted the antitumor efficacy of the monoclonal antibody trastuzumab in immunodeficient C57BL/6 SCID mice as well as in C57BL/6 hmHER2 transgenic mice. E6020 and trastuzumab co-treatment resulted in significantly greater inhibition of tumor growth than was observed with either agent individually. Furthermore, mice treated with the combination of trastuzumab and the TLR4 agonist were protected against rechallenge with human HER2-transfected tumor cells in hmHER2 transgenic mouse strains. These findings suggest that combined treatment with trastuzumab and a TLR4 agonist not only promotes direct antitumor effects but also induces a host-protective human HER2-directed adaptive immune response, indicative of a memory response. These data provide an immunological rationale for testing TLR4 agonists in combination with antibody therapy in patients with cancer.  相似文献   

13.
The widespread application of lanthanoids (Lns) in manufacturing industries has raised occupational and environmental health concerns about the possible increased health risks to humans exposed to Lns in their working and living environments. Numerous studies have shown that exposures to Ln cause pulmonary injury in animals, but very little is known about the molecular mechanisms of the pulmonary inflammation caused by cerium chloride (CeCl3) exposure. In this study, we evaluated the oxidative stress and molecular mechanism underlying with the pulmonary inflammation associated with chronic lung toxicity in mice treated with nasally instilled CeCl3 for 90 consecutive days. Our findings suggest that significant cerium accumulated in the lung, leading the obvious increase of the lung indices, significant increases in inflammatory cells and levels of lactate dehydrogenase, alkaline phosphate, and total protein, overproduction of reactive oxygen species and peroxidation of lipids, reduced antioxidant capacity, and pulmonary inflammation. CeCl3 exposure also activated nuclear factor κB, increased the expression of tumor necrosis factor α, cyclooxygenase-2, heme oxygenase 1, interleukin 2, interleukin 4, interleukin 6, interleukin 8, interleukin 10, interleukin 18, interleukin 1β, and CYP1A1. However, CeCl3 reduced the expression of nuclear factor κB (NF-κB)-inhibiting factor and heat shock protein 70. These findings suggest that the pulmonary inflammation caused by CeCl3 in mice is closely associated with oxidative stress and inflammatory cytokine expression.  相似文献   

14.
Insulin-like growth factor-I (IGF-I) has been implicated in postnatal alveolar development, pulmonary fibrosis, and non-small cell lung cancer. To further investigate the role of IGF-I, we created a line of transgenic mice in which alveolar type II epithelial cells express human IGF-IA under the control of the surfactant protein C promoter. We determined the effect of pulmonary overexpression of human IGF-IA on 1) pulmonary inflammation and fibrosis in response to intratracheal instillation of bleomycin, 2) premalignant pulmonary adenomatous hyperplasia, and 3) adenoma formation. Transgenic expression of human IGF-IA had no effect on baseline gross lung pathology, cellularity of bronchoalveolar lavage, or total lung collagen content. In addition, there were no significant differences between transgenic mice and nontransgenic littermate controls in the development of pulmonary inflammation or pulmonary fibrosis in response to intratracheal bleomycin instillation. However, pulmonary expression of human IGF-IA in older mice (>12 mo) significantly increased the incidence of premalignant adenomatous hyperplastic lesions compared with littermate controls without affecting adenoma formation. These findings suggest that increased expression of human IGF-IA in alveolar air spaces does not affect the development of pulmonary fibrosis but promotes premalignant changes in the alveolar epithelium.  相似文献   

15.
Although interleukin (IL)-7 is mostly known as a key regulator of lymphocyte homeostasis, we recently demonstrated that it also contributes to body weight regulation through a hypothalamic control. Previous studies have shown that IL-7 is produced by the human obese white adipose tissue (WAT) yet its potential role on WAT development and function in obesity remains unknown. Here, we first show that transgenic mice overexpressing IL-7 have reduced adipose tissue mass associated with glucose and insulin resistance. Moreover, in the high-fat diet (HFD)-induced obesity model, a single administration of IL-7 to C57BL/6 mice is sufficient to prevent HFD-induced WAT mass increase and glucose intolerance. This metabolic protective effect is accompanied by a significant decreased inflammation in WAT. In lymphocyte-deficient HFD-fed SCID mice, IL-7 injection still protects from WAT mass gain. However, IL-7-triggered resistance against WAT inflammation and glucose intolerance is lost in SCID mice. These results suggest that IL-7 regulates adipose tissue mass through a lymphocyte-independent mechanism while its protective role on glucose homeostasis would be relayed by immune cells that participate to WAT inflammation. Our observations establish a key role for IL-7 in the complex mechanisms by which immune mediators modulate metabolic functions.  相似文献   

16.
The importance of HER2/HER3 signaling in decreasing the effects of lung injury was recently demonstrated. Transgenic mice unable to signal through HER2/HER3 had significantly less bleomycin-induced pulmonary fibrosis and showed a survival benefit. Based on these data, we hypothesized that pharmacological blockade of HER2/HER3 in vivo in wild-type mice would have the same beneficial effects. We tested this hypothesis in a bleomycin lung injury model using 2C4, a monoclonal antibody directed against HER2 that blocks HER2/HER3 signaling. The administration of 2C4 before injury decreased the effects of bleomycin at days 15 and 21 after injury. HER2/HER3 blockade resulted in less collagen deposition (362.8 +/- 37.9 compared with 610.5 +/- 27.1 microg/mg; P = 0.03) and less lung morphological changes (injury score of 1.99 +/- 1.55 vs. 3.90 +/- 0.76; P < 0.04). In addition, HER2/HER3 blockade resulted in a significant survival advantage with 50% vs. 25% survival at 30 days (P = 0.04). These results confirm that HER2 signaling can be pharmacologically targeted to reduce lung fibrosis and remodeling after injury.  相似文献   

17.
Leukocytes in the peripheral lung parenchyma of mice have not been characterized histologically during bacterial infection. The aim of this study was to investigate (a) the immunohistological characteristics of healthy murine lungs and (b) the cell kinetics during acute inflammation. BALB/c and MF1 mice were examined; as well as transgenic mice with the gene defect of cystic fibrosis (CF) in the airways as an animal model for this disease. MF1 mice served as controls for the transgenic animals. Lavaged and perfused lungs were snap frozen. B and T lymphocytes, CD4+ and CD8+ cells, dendritic cells, neutrophils and a subset of macrophages were enumerated on cryostat lung sections. The lung tissue and bronchoalveolar lavage (BAL) of BALB/c mice, infected intratracheally with Haemophilus influenzae type b (Hib), were studied at different time points after infection. In the lungs of healthy mice, including CF mice, the largest population was that of T cells, CD4+ cells being always more frequent than CD8+ cells. During acute inflammation the number of neutrophils in the lung parenchyma and BAL increased strongly within the first hours after bacterial instillation and reached baseline levels within one week. This study provides a semi-quantitative analysis of immunocompetent cells in normal and infected murine lung tissue. Differences in cell numbers are found between different strains. Moreover, the cellular reaction during Hib infection in mouse lungs is dominated by neutrophils, as expected in a primary immune response. In uninfected CF mice the numbers and distribution of immune cells in the lung tissue are normal, indicating that the cellular defense is adequate.  相似文献   

18.
Leukemia inhibitory factor (LIF) is produced by a large number of pulmonary cells in response to diverse stimuli. Exaggerated levels of LIF have also been detected in the adult respiratory distress syndrome and other disorders. The biologic effects of LIF in the lung, however, have not been elucidated. To define the respiratory effects of LIF, we generated transgenic mice in which human LIF was selectively targeted to the mature lung. In these mice, transgene activation caused an impressive increase in bronchoalveolar lavage (BAL) cellularity with a significant increase in BAL and tissue B lymphocytes. LIF also conferred protection in 100% O2 where it decreased alveolar-capillary protein leak and enhanced survival. This protective effect was associated with the induction of interleukin (IL)-6 mRNA and protein. LIF transgenic mice with a null mutation in IL-6 were more sensitive to the toxic effects of 100% O2 than LIF-transgenic animals with a wild-type IL-6 locus. These studies demonstrate that LIF induces B cell hyperplasia and confers protection in hyperoxic acute lung injury. They also demonstrate that LIF induces IL-6 and that the protective effects of LIF are mediated, in part, via this inductive event. LIF may be an important regulator of B cell-mediated responses and oxidant injury in the lung.  相似文献   

19.
Arrestins are adaptor/scaffold proteins that complex with activated and phosphorylated G protein-coupled receptor to terminate G protein activation and signal transduction. These complexes also mediate downstream signaling, independently of G protein activation. We have previously shown that beta-arrestin-2 (betaarr2) depletion promotes CXCR2-mediated cellular signaling, including angiogenesis and excisional wound closure. This study was designed to investigate the role of betaarr2 in tumorigenesis using a murine model of lung cancer. To that end, heterotopic murine Lewis lung cancer and tail vein metastasis tumor model systems in betaarr2-deficient mice (betaarr2(-/-)) and control littermates (betaarr2(+/+)) were used. betaarr2(-/-) mice exhibited a significant increase in Lewis lung cancer tumor growth and metastasis relative to betaarr2(+/+) mice. This correlated with decreased number of tumor-infiltrating lymphocytes but with elevated levels of the ELR(+) chemokines (CXCL1/keratinocyte-derived chemokine and CXCL2/MIP-2), vascular endothelial growth factor, and microvessel density. NF-kappaB activity was also enhanced in betaarr2(-/-) mice, whereas hypoxia-inducible factor-1alpha expression was decreased. Inhibition of CXCR2 or NF-kappaB reduced tumor growth in both betaarr2(-/-) and betaarr2(+/+) mice. NF-kappaB inhibition also decreased ELR(+) chemokines and vascular endothelial growth factor expression. Altogether, the data suggest that betaarr2 modulates tumorigenesis by regulating inflammation and angiogenesis through activation of CXCR2 and NF-kappaB.  相似文献   

20.
Neuregulin is an important growth factor in fetal surfactant synthesis, and downregulation of its receptor, ErbB4, impairs fetal surfactant synthesis. We hypothesized that pulmonary ErbB4 deletion will affect the developing lung leading to an abnormal postnatal lung function. ErbB4-deleted lungs of 11- to 14-wk-old adult HER4heart mice, rescued from their lethal cardiac defects, were studied for the effect on lung function, alveolarization, and the surfactant system. ErbB4 deletion impairs lung function and structure in HER4heart mice resulting in a hyperreactive airway system and alveolar simplification, as seen in preterm infants with bronchopulmonary dysplasia. It also leads to a downregulation of surfactant protein D expression and an underlying chronic inflammation in these lungs. Our findings suggest that this animal model could be used to further study the pathogenesis of bronchopulmonary dysplasia and might help design protective interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号