首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 540 毫秒
1.
Coral reefs and their associated fauna are largely impacted by ongoing climate change. Unravelling species responses to past climatic variations might provide clues on the consequence of ongoing changes. Here, we tested the relationship between changes in sea surface temperature and sea levels during the Quaternary and present‐day distributions of coral reef fish species. We investigated whether species‐specific responses are associated with life‐history traits. We collected a database of coral reef fish distribution together with life‐history traits for the Indo‐Pacific Ocean. We ran species distribution models (SDMs) on 3,725 tropical reef fish species using contemporary environmental factors together with a variable describing isolation from stable coral reef areas during the Quaternary. We quantified the variance explained independently by isolation from stable areas in the SDMs and related it to a set of species traits including body size and mobility. The variance purely explained by isolation from stable coral reef areas on the distribution of extant coral reef fish species largely varied across species. We observed a triangular relationship between the contribution of isolation from stable areas in the SDMs and body size. Species, whose distribution is more associated with historical changes, occurred predominantly in the Indo‐Australian archipelago, where the mean size of fish assemblages is the lowest. Our results suggest that the legacy of habitat changes of the Quaternary is still detectable in the extant distribution of many fish species, especially those with small body size and the most sedentary. Because they were the least able to colonize distant habitats in the past, fish species with smaller body size might have the most pronounced lags in tracking ongoing climate change.  相似文献   

2.
The present paper reviews the effects of water temperature and flow on migrations, embryonic development, hatching, emergence, growth and life‐history traits in light of the ongoing climate change with emphasis on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta. The expected climate change in the Atlantic is for milder and wetter winters, with more precipitation falling as rain and less as snow, decrease in ice‐covered periods and frequent periods with extreme weather. Overall, thermal limits for salmonids are species specific. Scope for activity and growth and optimal temperature for growth increase with temperature to an optimal point before constrain by the oxygen content of the water. The optimal temperature for growth decreases with increasing fish size and varies little among populations within species, whereas the growth efficiency may be locally adapted to the temperature conditions of the home stream during the growth season. Indirectly, temperature influences age and size at smolting through its effect on growth. Time of spawning, egg hatching and emergence of the larvae vary with temperature and selective effects on time of first feeding. Traits such as age at first maturity, longevity and fecundity decrease with increasing temperature whilst egg size increases with temperature. Water flow influences the accessibility of rivers for returning adults and speed of both upstream and downstream migration. Extremes in water flow and temperature can decrease recruitment and survival. There is reason to expect a northward movement of the thermal niche of anadromous salmonids with decreased production and population extinction in the southern part of the distribution areas, migrations earlier in the season, later spawning, younger age at smolting and sexual maturity and increased disease susceptibility and mortality. Future research challenges are summarized at the end of the paper.  相似文献   

3.
Climate change is expected to strongly affect freshwater fish communities. Combined with other anthropogenic drivers, the impacts may alter species spatio‐temporal distributions and contribute to population declines and local extinctions. To provide timely management and conservation of fishes, it is relevant to identify species that will be most impacted by climate change and those that will be resilient. Species traits are considered a promising source of information on characteristics that influence resilience to various environmental conditions and impacts. To this end, we collated life‐history traits and climatic niches of 443 European freshwater fish species and compared those identified as susceptible to climate change to those that are considered to be resilient. Significant differences were observed between the two groups in their distribution, life history, and climatic niche, with climate‐change‐susceptible species being distributed within the Mediterranean region, and being characterized by greater threat levels, lesser commercial relevance, lower vulnerability to fishing, smaller body and range size, and warmer thermal envelopes. Based on our results, we establish a list of species of highest priority for further research and monitoring regarding climate‐change susceptibility within Europe. The presented approach represents a promising tool to efficiently assess large groups of species regarding their susceptibility to climate change and other threats, and to identify research and management priorities.  相似文献   

4.
Cicadas are large hemipteran insects characterized by unique life‐history traits, such as extraordinarily long life cycles, a subterranean/terrestrial habitat transition, xylem sap‐feeding and melodious sound production. These fascinating features of cicadas have attracted much attention in the research fields of physiology and ecology, resulting in an accumulation of knowledge about the underlying mechanisms and their adaptive significance. Although community‐level responses to recent climate change have already been documented for cicada fauna, an understanding of their causal relationships is still at the initial stages. In this review, we summarize current knowledge about environmental adaptations of cicadas to facilitate a deeper understanding of the ecophysiological consequences of climate change. We first outline the diverse responses of cicadas to environmental factors, mainly temperature, and their strategies to cope with naturally fluctuating environments. Then, we discuss the consequence of upcoming climate change by consolidating the current findings. This review highlights the fact that fitness‐relevant activities are fine‐tuned to a species‐specific temperature optimum to achieve habitat segregation among coexisting species, implying that cicada diversity is highly susceptible to climate warming. As a result of their conspicuous large bodies and species‐specific calling songs, cicadas are promising candidates for use as bioindicator species to monitor ecological impacts of climate change. We encourage future works that continuously quantify population‐ and community‐level responses to upcoming climate change, as well as unveil mechanistic links between physiological traits and ecological consequences.  相似文献   

5.
Ecological responses to environmental change are wide‐ranging, from alterations in the timing of life‐history events to range and population changes. Explaining the variation across species in these responses is essential for identifying vulnerable species and for developing adequate conservation or mitigation strategies. Using population trend data from the UK Breeding Bird Survey, this study examined the association between long‐term population trends (1994–2007) and phenological, life‐history and resource‐use traits of UK passerine species. Phenology, as well as productivity and resource use were significantly associated with long‐term population trends. Average laying date and first clutch laying period were key predictors, with higher population growth rates associated with earlier laying dates and longer laying periods. This suggests that flexibility in the duration of reproductive periods buffers species against environmental changes. Average laying period was particularly important for migrant species. Flexibility in laying dates for these species is constrained by their arrival dates; mean change in arrival date over a twenty‐five year period strongly predicted population trends amongst migrant species. Besides the key role phenological flexibility plays in buffering population declines, we also showed that more productive, generalist species were less likely to have declining populations than species with specialized habitat requirements, particularly those associated with farmland and urban areas and those reliant on highly seasonal food items (i.e. invertebrate eaters). These results underscore the need for a multi‐faceted approach to understanding the mechanisms governing population trends. Additionally, species’ sensitivity to environmental change is likely to depend on interactions between species‐specific phenology, habitat and resource‐use traits.  相似文献   

6.
Poleward and upward species range shifts are the most commonly anticipated and studied consequences of climate warming. However, these global responses to climate change obscure more complex distribution change patterns. We hypothesize that the spatial arrangement of mountain ranges and, consequently, climatic gradients in Europe, will result in range disjunctions. This hypothesis was investigated for submountainous forest plant species at two temporal and spatial scales: (i) under future climate change (between 1950–2000 and 2061–2080 periods) at the European scale and (ii) under contemporary climate change (between 1914–1987 and 1997–2013 periods) at the French scale. We selected 97 submountainous forest plant species occurring in France, among which distribution data across Europe are available for 25 species. By projecting future distribution changes for the 25 submountainous plant species across Europe, we demonstrated that range disjunction is a likely consequence of future climate change. To assess whether it is already taking place, we used a large forest vegetation‐plot database covering the entire French territory over 100 years (1914–2013) and found an average decrease in frequency (?0.01 ± 0.004) in lowland areas for the 97 submountainous species – corresponding to a loss of 6% of their historical frequency – along with southward and upward range shifts, suggesting early signs of range disjunctions. Climate‐induced range disjunctions should be considered more carefully since they could have dramatic consequences on population genetics and the ability of species to face future climate changes.  相似文献   

7.
8.
Spatial responses of species to past climate change depend on both intrinsic traits (climatic niche breadth, dispersal rates) and the scale of climatic fluctuations across the landscape. New capabilities in generating and analysing population genomic data, along with spatial modelling, have unleashed our capacity to infer how past climate changes have shaped populations, and by extension, complex communities. Combining these approaches, we uncover lineage diversity across four codistributed lizards from the Australian Monsoonal Tropics and explore how varying climatic tolerances interact with regional climate history to generate common vs. disparate responses to late Pleistocene change. We find more divergent spatial structuring and temporal demographic responses in the drier Kimberley region compared to the more mesic and consistently suitable Top End. We hypothesize that, in general, the effects of species’ traits on sensitivity to climate fluctuation will be more evident in climatically marginal regions. If true, this points to the need in climatically marginal areas to craft more species‐(or trait)‐specific strategies for persistence under future climate change.  相似文献   

9.
Climatic factors influence the distribution of ectotherms, raising the possibility that distributions of many species will shift rapidly under climate change and/or that species will become locally extinct. Recent studies have compared performance curves of species from different climate zones and suggested that tropical species may be more susceptible to climate change than those from temperate environments. However, in other comparisons involving responses to thermal extremes it has been suggested that mid‐latitude populations are more susceptible. Using a group of 10 closely related Drosophila species with known tropical or widespread distribution, we undertake a detailed investigation of their growth performance curves and their tolerance to thermal extremes. Thermal sensitivity of life history traits (fecundity, developmental success, and developmental time) and adult heat resistance were similar in tropical and widespread species groups, while widespread species had higher adult cold tolerance under all acclimation regimes. Laboratory measurements of either population growth capacity or acute tolerance to heat and cold extremes were compared to daily air temperature under current (2002–2007) and future (2100) conditions to investigate if these traits could explain current distributions and, therefore, also forecast future effects of climate change. Life history traits examining the thermal sensitivity of population growth proved to be a poor predictor of current species distributions. In contrast, we validate that adult tolerance to thermal extremes provides a good correlate of current distributions. Thus, in their current distribution range, most of the examined species experience heat exposure close to, but rarely above, the functional heat resistance limit. Similarly, adult functional cold resistance proved a good predictor of species distribution in cooler climates. When using the species’ functional tolerance limits under a global warming scenario, we find that both tropical and widespread Drosophila species will face a similar proportional reduction in distribution range under future warming.  相似文献   

10.
Poleward range expansions are widespread responses to recent climate change and are crucial for the future persistence of many species. However, evolutionary change in traits such as colonization history and habitat preference may also be necessary to track environmental change across a fragmented landscape. Understanding the likelihood and speed of such adaptive change is important in determining the rate of species extinction with ongoing climate change. We conducted an amplified fragment length polymorphism (AFLP)‐based genome scan across the recently expanded UK range of the Brown Argus butterfly, Aricia agestis, and used outlier‐based (DFDIST and BayeScan) and association‐based (Isolation‐By‐Adaptation) statistical approaches to identify signatures of evolutionary change associated with range expansion and habitat use. We present evidence for (i) limited effects of range expansion on population genetic structure and (ii) strong signatures of selection at approximately 5% AFLP loci associated with both the poleward range expansion of A. agestis and differences in habitat use across long‐established and recently colonized sites. Patterns of allele frequency variation at these candidate loci suggest that adaptation to new habitats at the range margin has involved selection on genetic variation in habitat use found across the long‐established part of the range. Our results suggest that evolutionary change is likely to affect species’ responses to climate change and that genetic variation in ecological traits across species’ distributions should be maximized to facilitate range shifts across a fragmented landscape, particularly in species that show strong associations with particular habitats.  相似文献   

11.
Species responses to climate change may be influenced by changes in available habitat, as well as population processes, species interactions and interactions between demographic and landscape dynamics. Current methods for assessing these responses fail to provide an integrated view of these influences because they deal with habitat change or population dynamics, but rarely both. In this study, we linked a time series of habitat suitability models with spatially explicit stochastic population models to explore factors that influence the viability of plant species populations under stable and changing climate scenarios in South African fynbos, a global biodiversity hot spot. Results indicate that complex interactions between life history, disturbance regime and distribution pattern mediate species extinction risks under climate change. Our novel mechanistic approach allows more complete and direct appraisal of future biotic responses than do static bioclimatic habitat modelling approaches, and will ultimately support development of more effective conservation strategies to mitigate biodiversity losses due to climate change.  相似文献   

12.
The ability of species to shift their distributions in response to climate change may be impeded by lack of suitable climate or habitat between species’ current and future ranges. We examined the potential for climate and forest cover to limit the movement of bird species among sites of biodiversity importance in the Albertine Rift, East Africa, a biodiversity hotspot. We forecasted future distributions of suitable climate for 12 Albertine Rift endemic bird species using species distribution models based on current climate data and projections of future climate. We used these forecasts alongside contemporary forest cover and natal dispersal estimates to project potential movement of species over time. We identified potentially important pathways for the bird species to move among 30 important bird and biodiversity areas (IBAs) that are both currently forested and projected to provide suitable climate over intervening time periods. We examined the relative constraints imposed by availability of suitable climate and forest cover on future movements. The analyses highlighted important pathways of potential dispersal lying along a north‐south axis through high elevation areas of the Albertine Rift. Both forest availability and climate suitability were projected to influence bird movement through these landscapes as they are affected by future climate change. Importantly, forest cover and areas projected to contain suitable climate in future were often dissociated in space, which could limit species’ responses to climate change. A lack of climatically suitable areas was a far greater impediment to projected movement among IBAs than insufficient forest cover. Although current forest cover appears sufficient to facilitate movement of bird species in this region, protecting the remaining forests in areas also projected to be climatically suitable for species to move through in the future should be a priority for adaptation management.  相似文献   

13.
Impacts of climate change on avian populations   总被引:1,自引:0,他引:1  
This review focuses on the impacts of climate change on population dynamics. I introduce the MUP (Measuring, Understanding, and Predicting) approach, which provides a general framework where an enhanced understanding of climate‐population processes, along with improved long‐term data, are merged into coherent projections of future population responses to climate change. This approach can be applied to any species, but this review illustrates its benefit using birds as examples. Birds are one of the best‐studied groups and a large number of studies have detected climate impacts on vital rates (i.e., life history traits, such as survival, maturation, or breeding, affecting changes in population size and composition) and population abundance. These studies reveal multifaceted effects of climate with direct, indirect, time‐lagged, and nonlinear effects. However, few studies integrate these effects into a climate‐dependent population model to understand the respective role of climate variables and their components (mean state, variability, extreme) on population dynamics. To quantify how populations cope with climate change impacts, I introduce a new universal variable: the ‘population robustness to climate change.’ The comparison of such robustness, along with prospective and retrospective analysis may help to identify the major climate threats and characteristics of threatened avian species. Finally, studies projecting avian population responses to future climate change predicted by IPCC‐class climate models are rare. Population projections hinge on selecting a multiclimate model ensemble at the appropriate temporal and spatial scales and integrating both radiative forcing and internal variability in climate with fully specified uncertainties in both demographic and climate processes.  相似文献   

14.
Aims To test the magnitude and direction of the effects of large‐scale environmental factors (latitude and habitat type: lotic or lentic) on the intraspecific variations in multiple life‐history traits, across multiple European freshwater fish species. To test the relevance of defining species traits by quantifying the magnitude of interspecific vs. intraspecific variability in traits. Location Europe. Methods We obtained estimates of 11 fish traits from published sources for 1089 populations of 25 European freshwater fish species. Traits were: longevity, maximal length, growth rate, asymptotic length, mortality rate, age and length at maturation, fecundity, egg size, gonadosomatic index, and length of breeding season. We described population habitats by latitude and habitat type (lotic or lentic), when available. For each species we tested the combined effect of latitude and habitat type on the intraspecific variation of each trait using analysis of covariance (ancova ). We compared the intraspecific variation in traits with the variation between species using an analysis of variance (anova ) for each trait, all species pooled. Results We found a consistent effect in direction of latitude on six traits, but we showed that this effect is not always significant across species. Higher‐latitude populations often grew more slowly, matured later, had a longer life span and a higher maximal and asymptotic length, and allocated more energy to reproduction than populations at lower latitudes. By contrast, we noted only a slight effect of habitat type on the intraspecific variation in traits, except for Salmo trutta. All traits varied significantly between species. However, traits such as growth rate, mortality rate and length of breeding season varied more between populations than between species, whereas fecundity and traits associated with body length varied more between species. Main conclusions Latitude, in contrast to habitat type, is an important factor influencing several traits of geographically widely dispersed populations of multiple European freshwater fish species. Species traits that vary more between species than between populations are attractive variables for understanding and predicting the responses of stream fish communities to their environment.  相似文献   

15.
Plants’ responses to climate change are complex. Even the same net performance changes may involve different responses of multiple life history traits. Here we show that two congeneric thistles, Carduus nutans and Carduus acanthoides, both grew taller under increased temperature, albeit following divergent response patterns. For C. nutans, warming advanced bolting more than flowering, leading to a longer growing period before flowering and ultimately taller plant height at the end of the growing season. Carduus acanthoides maintained the same length of growing period because of equally shifted events in the phenological sequence, however, post-flowering growth rate was increased, which also led to enhanced final plant height. As seeds from taller plants disperse farther, their responses imply that future invasion spread rates of these two species will increase. Similar consequences due to divergent responses in life history traits, as demonstrated in this study, suggest that considering only ultimate performance outcomes, and not the underlying processes generating such outcomes, is not enough to understand the impacts of climate change.  相似文献   

16.
Understanding the biogeographic and phylogenetic basis to interspecific differences in species’ functional traits is a central goal of evolutionary biology and community ecology. We quantify the extent of phylogenetic influence on functional traits and life‐history strategies of Australian freshwater fish to highlight intercontinental differences as a result of Australia's unique biogeographic and evolutionary history. We assembled data on life history, morphological and ecological traits from published sources for 194 Australian freshwater species. Interspecific variation among species could be described by a specialist–generalist gradient of variation in life‐history strategies associated with spawning frequency, fecundity and spawning migration. In general, Australian fish showed an affinity for life‐history strategies that maximise fitness in hydrologically unpredictable environments. We also observed differences in trait lability between and within life history, morphological and ecological traits where in general morphological and ecological traits were more labile. Our results showed that life‐history strategies are relatively evolutionarily labile and species have potentially evolved or colonised in freshwaters frequently and independently allowing them to maximise population performance in a range of environments. In addition, reproductive guild membership showed strong phylogenetic constraint indicating that evolutionary history is an important component influencing the range and distribution of reproductive strategies in extant species assemblages. For Australian freshwater fish, biogeographic and phylogenetic history contribute to broad taxonomic differences in species functional traits, while finer scale ecological processes contribute to interspecific differences in smaller taxonomic units. These results suggest that the lability or phylogenetic relatedness of different functional traits affects their suitability for testing hypothesis surrounding community level responses to environmental change.  相似文献   

17.

Aim

Studies of species' range shifts have become increasingly relevant for understanding ecology and biogeography in the face of accelerated global change. The combination of limited mobility and imperilled status places some species at a potentially greater risk of range loss, extirpation or extinction due to climate change. To assess the ability of organisms with limited movement and dispersal capabilities to track shifts associated with climate change, we evaluated reproductive and dispersal traits of freshwater mussels (Unionida), sessile invertebrates that require species‐specific fish for larval dispersal.

Location

North American Atlantic Slope rivers.

Methods

To understand how unionid mussels may cope with and adapt to current and future warming trends, we identified mechanisms that facilitated their colonization of the northern Atlantic Slope river basins in North America after the Last Glacial Maximum. We compiled species occurrence and life history trait information for each of 55 species, and then selected life history traits for which ample data were available (larval brooding duration, host fish specificity, host infection strategy, and body size) and analysed whether the trait state for each was related to mussel distribution in Atlantic Slope rivers.

Results

Brooding duration (p < .01) and host fish specificity (p = .02) were significantly related to mussel species distribution. Long‐term brooders were more likely than short‐term brooders to colonize formerly glaciated rivers, as were host generalists compared to specialists. Body size and host infection strategy were not predictive of movement into formerly glaciated rivers (p > .10).

Main conclusions

Our results are potentially applicable to many species for which life history traits have not been well‐documented, because reproductive and dispersal traits in unionid mussels typically follow phylogenetic relationships. These findings may help resource managers prioritize species according to climate change vulnerability and predict which species might become further imperilled with climate warming. Finally, we suggest that similar trait‐based decision support frameworks may be applicable for other movement limited taxa.
  相似文献   

18.
  • Under exploitation and environmental change, it is essential to assess the sensitivity and vulnerability of marine ecosystems to such stress. A species' response to stress depends on its life history. Sensitivity to harvesting is related to the life history “fast–slow” continuum, where “slow” species (i.e., large, long lived, and late maturing) are expected to be more sensitive to fishing than “fast” ones. We analyze life history traits variation for all common fish species in the Barents Sea and rank fishes along fast–slow gradients obtained by ordination analyses. In addition, we integrate species' fast–slow ranks with ecosystem survey data for the period 2004–2009, to assess life history variation at the community level in space and time. Arctic fishes were smaller, had shorter life spans, earlier maturation, larger offspring, and lower fecundity than boreal ones. Arctic fishes could thus be considered faster than the boreal species, even when body size was corrected for. Phylogenetically related species possessed similar life histories. Early in the study period, we found a strong spatial gradient, where members of fish assemblages in the southwestern Barents Sea displayed slower life histories than in the northeast. However, in later, warmer years, the gradient weakened caused by a northward movement of boreal species. As a consequence, the northeast experienced increasing proportions of slower fish species. This study is a step toward integrating life history traits in ecosystem‐based areal management. On the basis of life history traits, we assess the fish sensitivity to fishing, at the species and community level. We show that climate warming promotes a borealization of fish assemblages in the northeast, associated with slower life histories in that area. The biology of Arctic species is still poorly known, and boreal species that now establish in the Arctic are fishery sensitive, which calls for cautious ecosystem management of these areas.
  相似文献   

19.
The Laurentian Great Lakes of North America provide valuable ecosystem services, including fisheries, to the surrounding population. Given the prevalence of other anthropogenic stressors that have historically affected the fisheries of the Great Lakes (e.g., eutrophication, invasive species, overfishing), climate change is often viewed as a long-term stressor and, subsequently, may not always be prioritized by managers and researchers. However, climate change has the potential to negatively affect fish and fisheries in the Great Lakes through its influence on habitat. In this paper, we (1) summarize projected changes in climate and fish habitat in the Great Lakes; (2) summarize fish responses to climate change in the Great Lakes; (3) describe key interactions between climate change and other stressors relevant to Great Lakes fish, and (4) summarize how climate change can be incorporated into fisheries management. In general, fish habitat is projected to be characterized by warmer temperatures throughout the water column, less ice cover, longer periods of stratification, and more frequent and widespread periods of bottom hypoxia in productive areas of the Great Lakes. Based solely on thermal habitat, fish populations theoretically could experience prolonged optimal growth environment within a changing climate, however, models that assess physical habitat influences at specific life stages convey a more complex picture. Looking at specific interactions with other stressors, climate change may exacerbate the negative impacts of both eutrophication and invasive species for fish habitat in the Great Lakes. Although expanding monitoring and research to consider climate change interactions with currently studied stressors, may offer managers the best opportunity to keep the valuable Great Lakes fisheries sustainable, this expansion is globally applicable for large lake ecosystem dealing with multiple stressors in the face of continued human-driven changes.  相似文献   

20.
Predicted climate change in the Andes will require plant species to migrate upslope to avoid extinction. Central to predictions of species responses to climate change is an understanding of species distributions along environmental gradients. Environmental gradients are frequently modelled as abiotic, but biotic interactions can play important roles in setting species distributions, abundances, and life history traits. Biotic interactions also have the potential to influence species responses to climate change, yet they remain mostly unquantified. An important interaction long studied in tropical forests is postdispersal seed predation which has been shown to affect the population dynamics, community structure, and diversity of plant species in time and space. This paper presents a comparative seed predation study of 24 species of tropical trees across a 2.5 km elevation gradient in the Peruvian Andes and quantifies seed predation variation across the elevational gradient. We then use demographic modelling to assess effects of the observed variation in seed predation on population growth rates in response to observed increasing temperatures in the area. We found marked variation among species in total seed predation depending on the major seed predator of the species and consistent changes in seed predation across the gradient. There was a significant increase in seed survival with increasing elevation, a trend that appears to be driven by regulation of seed predators via top–down forces in the lowlands giving way to bottom–up (productivity) regulation at mid‐ to high elevations, resulting in a ninefold increase in effective fecundity for trees at high elevations. This potential increase in seed crop size strongly affects modelled plant population growth and seed dispersal distances, increasing population migration potential in the face of climate change. These results also indicate that species interactions can have effects on par with climate in species responses to global change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号