首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of osmolytes on the unfolding and refolding process of recombinant human brain-type creatine kinase (rHBCK) were comparatively, quantitatively studied in dilute solutions and macromolecular crowding systems (simulated by 100g/L polyethylene glycol 2000), respectively. The results showed that the osmolytes, including glycerol, sucrose, dimethylsulfoxide, mannitol, inositol, and xylitol, could both protect the rHBCK from denaturation induced by 0.8M GdnHCl and aid in the refolding of denatured-rHBCK in macromolecular crowding systems. When we examined the effects of sucrose and xylitol on the parameters of residual activity, reaction kinetics and intrinsic fluorescence of rHBCK during unfolding, it was found that the protecting effects of osmolytes in a macromolecular crowding system were more significant compared with those in a dilute solution, which resulted in more residual activities, protected the conformational changes and greatly decreased the rates of both the fast and slow tracks. Regarding the effects of glycerol, sucrose and mannitol on the denatured-rHBCK refolding parameters of refolding yield, reaction kinetics and aggregation, the results indicated that the osmolytes could alleviate the aggregation of rHBCK during refolding in both dilute solutions and macromolecular crowding systems, and the refolding yields and reaction rates under macromolecular crowding environment could be increased by the addition of osmolytes, though higher yields were obtained in the dilute solution. For further insight, osmolyte docking simulations and rHBCK denaturation were conducted successfully and confirmed our experimental results. The predictions based on the docking simulations suggested that the deactivation of guanidine may be blocked by osmolytes because they share common binding sites on rHBCK, and the higher number of interactions with rHBCK by osmolytes than guanidine may be one of the causes of rHBCK refolding. In brief, the additive effects of the exclusive volume effect from the macromolecular crowding system and the osmophobic effects from the osmolytes resulted in better performance of the osmolytes in a macromolecular crowding system, which also led to a better understanding of protein folding in the intracellular environment.  相似文献   

2.
The effects of four single macromolecular crowding agents, Ficoll 70, dextran 70, polyethylene glycol (PEG) 2000, and calf thymus DNA (CT DNA), and three mixed crowding agents containing both CT DNA and polysaccharide (or PEG 2000) on the refolding of guanidine hydrochloride-denatured rabbit muscle creatine kinase (MM-CK) have been examined by activity assay. When the total concentration of the mixed crowding agent is 100 g/l, in which the weight ratio of CT DNA to Ficoll 70 is 1:9, the refolding yield of MM-CK after refolding for 3 h under these conditions increases 23% compared with that in the presence of 10 g/l CT DNA, 18% compared with 100 g/l Ficoll 70, and 19% compared with that in the absence of crowding agents. A remarkable increase in the refolding yield of MM-CK by a mixed crowding agent containing CT DNA and dextran 70 (or PEG 2000) is also observed. Further folding kinetics analyses show that these three mixed crowding agents remarkably accelerate the refolding of MM-CK, compared with single crowding agents. Aggregation of MM-CK in the presence of any of the three mixed crowding agents is less serious than that in the presence of a single crowding agent at the same concentration but more serious than that in the absence of crowding agents. Both the refolding yield and the refolding rate of MM-CK in mixtures of these agents are increased relative to the individual agents by themselves, indicating that mixed macromolecular crowding agents are more favorable to MM-CK folding and can be used to reflect the physiological environment more accurately than single crowding agents.  相似文献   

3.
The effects of crowding agents, polyethylene glycol (PEG 20K), Dextran 70, and bovine serum albumin, on the denaturation of homotetrameric D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) in 0.5 M guanidine hydrochloride and the reactivation of the fully denatured enzyme have been examined quantitatively. Increasing the concentration of PEG 20K to 225 mg/ml decreases the rate constant of slow phase of GAPDH inactivation to 5% but with no change for the fast phase. Chaperone GroEL assists GAPDH refolding greatly and shows even higher efficiency under crowding condition. Crowding mainly affects refolding steps after the formation of the dimeric folding intermediate.  相似文献   

4.
The course of refolding and reactivation of urea-denatured creatine kinase (ATP; creatine N-phosphotransferase, EC 2.7.3.2) has been studied in the absence and presence of molecular chaperonin GroEL. The enzyme was denatured in Tris--HCl buffer containing 6 M urea for 1 h. In the refolding studies, the denatured enzyme was diluted 60-fold into the same buffer containing GroEL or not for activity, turbidity, fluorescence measurements and polyacrylamide gel electrophoresis. The results show that the reactivation process is dependent of creatine kinase concentration in the concentration range 2.5--4 microM. The levels of activity recovery decrease with increasing enzyme concentration because of the formation of wrong aggregates. The molecular chaperonin GroEL can bind the refolding intermediate of creatine kinase and thus prevent the formation of wrong aggregates. This intermediate is an inactive dimeric form that is in a conformation resembling the 'molten globule' state.  相似文献   

5.
6.
The effects of polysaccharide, polyethylene glycol, and protein-crowding agents on the refolding of glucose-6-phosphate dehydrogenase (G6PDH) and protein disulfide isomerase have been examined. By increasing concentration during refolding, the reactivation yields of the two proteins decrease with the formation of soluble aggregates. In the presence of high concentrations of crowding agents the reactivation yields remain constant but with decreased refolding rates. The refolding of G6PDH changes from monophasic to biphasic first-order reactions in the presence of crowding agents, and the amplitude of the new slow phase increases with increasing concentrations of crowding agents. The molecular chaperone GroEL reverses the refolding kinetics of G6PDH from biphase back to monophase and accelerates the refolding process. Our results display the complexity and diversity of the effects of macromolecular crowding on both the thermodynamics and kinetics of protein folding.  相似文献   

7.
The processes of aggregation and refolding of recombinant human creatine kinase (rHCK) were studied. Most of the rHCK expressed in E. coli was present in the insoluble traction and it could be solubilized in 6 M urea solution. Unfolding of rHCK in 6 M urea showed biphasic kinetic courses (kappa1 = 6.5 x 10(-3) s(-1); kappa2 = 0.54 x 10(-3) s(-1)) as observed by maximum fluorescence wavelength change. During refolding of the rHCK dissolved in urea, significant aggregation was noticed following first-order kinetics. Aggregation rate constants were influenced by the concentration of NaCl, which increased the difference in transition-free energy (deltadeltaG), showing that stabilization of folding intermediates by NaCl could efficiently reduce the formation of insoluble aggregates. Formations of aggregate were also reduced by adjusting temperature, pH, and concentration of rHCK. Refolding of rHCK under the optimized condition which prevented the aggregation also showed multi-kinetic phases (kappa1 = 3.0 x 10(-3) s(-1); kappa2 = 0.64 x 10(-3) s(-1)). Under optimized conditions applied in this study, rHCK could correctly refold retrieving the high specific enzymatic activity.  相似文献   

8.
Creatine kinase (CK; E.C. 2.7.3.2) is an important enzyme that catalyzes the reversible transfer of a phosphoryl group from ATP to creatine in energy homeostasis. The brain-type cytosolic isoform of creatine kinase (BB-CK), which is found mainly in the brain and retina, is a key enzyme in brain energy metabolism, because high-energy phosphates are transferred through the creatine kinase/phosphocreatine shuttle system. The recombinant human BB-CK protein was overexpressed as a soluble form in Escherichia coli and crystallized at 22 degrees C using PEG 4000 as a precipitant. Native X-ray diffraction data were collected to 2.2 A resolution using synchrotron radiation. The crystals belonged to the tetragonal space group P43212, with cell parameters of a=b=97.963, c= 164.312 A, and alpha=beta=gamma=90 degrees. The asymmetric unit contained two molecules of CK, giving a crystal volume per protein mass (Vm) of 1.80 A3 Da-1 and a solvent content of 31.6%.  相似文献   

9.
Effects of macromolecular crowding on protein folding and aggregation   总被引:18,自引:0,他引:18       下载免费PDF全文
We have studied the effects of polysaccharide and protein crowding agents on the refolding of oxidized and reduced hen lysozyme in order to test the prediction that association constants of interacting macromolecules in living cells are greatly increased by macromolecular crowding relative to their values in dilute solutions. We demonstrate that whereas refolding of oxidized lysozyme is hardly affected by crowding, correct refolding of the reduced protein is essentially abolished due to aggregation at high concentrations of crowding agents. The results show that the protein folding catalyst protein disulfide isomerase is particularly effective in preventing lysozyme aggregation under crowded conditions, suggesting that crowding enhances its chaperone activity. Our findings suggest that the effects of macromolecular crowding could have major implications for our understanding of how protein folding occurs inside cells.  相似文献   

10.
Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin (HTT) gene. Brain-type creatine kinase (CKB) is an enzyme involved in energy homeostasis via the phosphocreatine–creatine kinase system. Although downregulation of CKB was previously reported in brains of HD mouse models and patients, such regulation and its functional consequence in HD are not fully understood. In the present study, we demonstrated that levels of CKB found in both the soma and processes were markedly reduced in primary neurons and brains of HD mice. We show for the first time that mutant HTT (mHTT) suppressed the activity of the promoter of the CKB gene, which contributes to the lowered CKB expression in HD. Exogenous expression of wild-type CKB, but not a dominant negative CKB mutant, rescued the ATP depletion, aggregate formation, impaired proteasome activity, and shortened neurites induced by mHTT. These findings suggest that negative regulation of CKB by mHTT is a key event in the pathogenesis of HD and contributes to the neuronal dysfunction associated with HD. In addition, besides dietary supplementation with the CKB substrate, strategies aimed at increasing CKB expression might lead to the development of therapeutic treatments for HD.  相似文献   

11.
T4 polynucleotide kinase rapidly loses activity during its reaction on duplex DNA termini. Addition of high concentrations of nonspecific polymers reverses or prevents this inactivation. In contrast, additions of related materials of lower molecular weight are relatively ineffective in stabilizing the kinase. Such a pattern suggests that the stabilizing effects of polymers on kinase activity are due to macromolecular crowding. An effect of crowding on the known tendency of the kinase to undergo oligomerization reactions is consistent with our observations.  相似文献   

12.
The influence of osmolytes, including dimethysulfoxide, glycine, proline and sucrose, on the refolding and reactivation courses of guanidine-denatured creatine kinase was studied by fluorescence emission spectra, circular dichroism spectra, recovery of enzymatic activity and aggregation. The results showed that low concentrations of dimethysulfoxide (<20%), glycine (<0.5 M), proline (<1 M) and sucrose (<0.75 M) improved the refolding yields of creatine kinase, but high osmolyte concentrations decreased its recovery. Sucrose favored the secondary structural formation of creatine kinase. Proline and sucrose facilitated refolding of the protein to its original conformation, while dimethysulfoxide and proline accelerated the hydrophobic collapse of creatine kinase to a packed protein. During the aggregation of creatine kinase, dimethysulfoxide and sucrose inhibited aggregation of creatine kinase, as did proline, but glycine was unable to inhibit aggregation. These systematic observations further support the suggestion that osmolytes, including low concentrations of dimethysulfoxide, proline or sucrose, possibly play a chaperone role in the refolding of creatine kinase. The results also indicate that sucrose and free amino acids are not only energy substrates and organic components in vivo, but also help correct protein folding.  相似文献   

13.
Creatine kinase (CK) is a key enzyme to maintain the energy homeostasis in vertebrate excitable tissues. Due to its importance in cellular energetics, the activity and level of CK are crucial to cellular and body functions. CK is sensitive to oxidative stresses and is thought to be one of the main targets of oxidative modification in neurodegenerative diseases. In this research, we investigated the effect of copper, an essential trace element for all organisms and an inducer of the reactive oxygen species, on CK refolding. It was found that trace amounts of Cu(2+) (3mol eq of Cu(2+)) could efficiently block the refolding of CK. The Cu(2+)-trapped CK could not be reactivated by the addition of EDTA, but could be reactivated by DTT. Spectroscopic experiments suggested that copper ions blocked CK refolding by specifically binding with the monomeric refolding intermediate, which further retarded CK refolding and promoted the formation of off-pathway aggregates. The results herein suggested that Cu(2+)-induced CK dysfunction might be caused not only by the post-translational oxidation, but also by the direct binding of copper ions with the newly-synthesized polypeptides.  相似文献   

14.
Mitosis is a complicated and ordered process with high energy demands and metabolite fluxes. Cytosolic creatine kinase (CK), an enzyme involved in ATP homeostasis, has been shown to be essential to chromosome movement during mitotic anaphase in sea urchin. However, it remains elusive for the molecular mechanism underlying the recruitment of cytosolic CK by the mitotic apparatus. In this study, Fam96b/MIP18, a component of the MMXD complex with a function in Fe/S cluster supply, was identified as a brain-type CK (CKB)-binding protein. The binding of Fam96b with CKB was independent of the presence of CKB substrates and did not interfere with CKB activity. Fam96b was prone to oligomerize via the formation of intermolecular disulfide bonds, while the binding of enzymatically active CKB could modulate Fam96b oligomerization. Oligomerized Fam96b recruited CKB and the MMXD complex to associate with the mitotic spindle. Depletion of Fam96b or CKB by siRNA in the HeLa cells led to mitotic defects, which further resulted in retarded cell proliferation, increased cell death and aberrant cell cycle progression. Rescue experiments indicated that both Fam96b oligomerization and CKB activity were essential to the proper formation of mitotic spindle. These findings suggest that Fam96b may act as a scaffold protein to coordinate the supply and homeostasis of ATP and Fe/S clusters during mitosis.  相似文献   

15.
The monomeric state of creatine kinase (CK) was stably captured at the equilibrium state by employing cysteine residue modifications in the presence of a denaturant, and at a partially folded state. The partially folded monomeric CK (PF-CK) was aggregated with kinetic order, which was mainly caused by the hydrophobic surface interactions between the CK subunits. The artificial chaperone, described as a SDS-cyclodextrin, was applied to prevent aggregation as well as to refold the PF-CK: SDS treatment onto the monomeric CK can significantly block aggregation and can be successfully refolded in the solutions containing cyclodextrins and DTT. Three types of cyclodextrins such as alpha-, beta-, and gamma-cyclodextrins were applied to strip SDS from the enzyme molecule, and each kinetic course was measured. The intrinsic fluorescence changes showed that reactivation occurred and this accompanied the conformational changes. The size exclusion chromatography detected the variously trapped monomeric CKs such as the thiol residue modified PF-CK, the SDS-binding PF-CK, the cyclodextrin treated PF-CK, and the DTT treated SDS-binding PF-CK. Our study demonstrated monomer CK aggregation for the first time; we also demonstrated the complex reassociation of CK during refolding with the aid of the SDS-cyclodextrin, and these pathways followed first-order kinetics.  相似文献   

16.
Creatine kinase (ATP:creatine N-phosphotransferase, EC 2.7.3.2) is a good model for studying dissociation and reassociation during unfolding and refolding. This study compares self-reassociated CK dimers and CK dimers that contain hybrid dimers under proper conditions. Creatine kinase forms a monomer when denatured in 6 M urea for 1 h which will very quickly form a dimer when the denaturant is diluted under suitable conditions. After modification by DTNB, CK was denatured in 6 M urea to form a modified CK monomer. Dimerization of this modified subunit of CK occurred upon dilution into a suitable buffer containing DTT. Therefore, three different types of reassociated CK dimers including a hybrid dimer can be made from two different CK monomers in the proper conditions. The CK monomers are from a urea-denatured monomer of DTNB-modified CK and from an unmodified urea dissociated monomer. Equal enzyme concentration ratios of these two monomers were mixed in the presence of urea, then diluted into the proper buffer to form the three types of reassociated CK dimers including the hybrid dimer. Reassociated CK dimers including all three different types recover about 75% activity following a two-phase course (k 1 = 4.88 × 10–3 s–1, k 2 = 0.68 × 10–3 s–1). Intrinsic fluorescence spectra of the three different CK monomers which were dissociated in 6 M urea, dissociated in 6 M urea after DTNB modification, and a mixture of the first two dissociated enzymes were studied in the presence of the denaturant urea. The three monomers had different fluorescence intensities and emission maxima. The intrinsic fluorescence maximum intensity changes of the reassociated CK dimers were also studied. The refolding processes also follow biphasic kinetics (k 1 = 3.28 × 10–3 s–1, k 2 = 0.11 × 10–3 s –1) after dilution in the proper solutions. Tsou's method [Tsou (1988), Adv. Enzymol. Rel. Areas Mol. Biol. 61, 381–436] was also used to measure the kinetic reactivation rate constants for the different three types of reassociated CK dimers, with different kinetic reactivation rate constants observed for each type. CK dissociation and reassociation schemes are suggested based on the results.  相似文献   

17.
AMP-activated protein kinase (AMPK) and cytosolic brain-type creatine kinase (BCK) cooperate under energy stress to compensate for loss of adenosine triphosphate (ATP) by either stimulating ATP-generating and inhibiting ATP-consuming pathways, or by direct ATP regeneration from phosphocreatine, respectively. Here we report on AMPK-dependent phosphorylation of BCK from different species identified by in vitro screening for AMPK substrates in mouse brain. Mass spectrometry, protein sequencing, and site-directed mutagenesis identified Ser6 as a relevant residue with one site phosphorylated per BCK dimer. Yeast two-hybrid analysis revealed interaction of active AMPK specifically with non-phosphorylated BCK. Pharmacological activation of AMPK mimicking energy stress led to BCK phosphorylation in astrocytes and fibroblasts, as evidenced with a highly specific phospho-Ser6 antibody. BCK phosphorylation at Ser6 did not affect its enzymatic activity, but led to the appearance of the phosphorylated enzyme at the endoplasmic reticulum (ER), close to the ER calcium pump, a location known for muscle-type cytosolic creatine kinase (CK) to support Ca2+-pumping.  相似文献   

18.
The course of the recovery of the enzymatic activity and the native conformation during the renaturation of urea-denatured creatine kinase (ATP:creatine N-phosphotransferase, EC 2.7.3.2) has been studied. Under suitable conditions, an activity recovery of 95% can be obtained and the reactivation follows a triphasic course. The initial two phases are relatively fast, whereas the slow phase takes some 24 h to reach completion. The recovery of the native conformation has been followed by changes in fluorescence, ultraviolet absorption and in exposed SH groups and has been shown to be a biphasic process. Both the reactivation and the refolding processes are independent of protein concentrations within a certain range, showing that the dimerization of the enzyme molecule is not rate-limiting. A comparison of the rate constants for the refolding of the molecule with those for the recovery of its catalytic activity shows that these are not synchronized and the activity recovery approaches completion after the refolding and dimerization of the subunits so far as can be detected by the methods employed. The final stage of refolding with complete activity recovery probably involves subtle conformational changes of the dimeric enzyme molecule not detectable by the physiochemical methods used in the present study.  相似文献   

19.
Inoue K  Ueno S  Fukuda A 《FEBS letters》2004,564(1-2):131-135
gamma-Aminobutyric acid, a major inhibitory neurotransmitter within the adult central nervous system, is also known to be excitatory at early developmental stages due to the elevated intracellular Cl(-) concentration. This functional change is primarily attributable to a K(+)-Cl(-) cotransporter, KCC2, the expression of which is developmentally regulated in neurons. However, little detail information is available concerning the intracellular regulation of KCC2 function. Here, we identify an interaction between KCC2 and brain-type creatine kinase by means of yeast two-hybrid screening. This interaction, which was also detected in cultured cells and brain extracts, might contribute to KCC2-mediated modulation of Cl(-) homeostasis.  相似文献   

20.
Compared to biochemical reactions taking place in relatively well-defined aqueous solutions in vitro, the corresponding reactions happening in vivo occur in extremely complex environments containing only 60-70% water by volume, with the remainder consisting of an undefined array of bio-molecules. In a biological setting, such extremely complex and volume-occupied solution environments are termed 'crowded'. Through a range of intermolecular forces and pseudo-forces, this complex background environment may cause biochemical reactions to behave differently to their in vitro counterparts. In this review, we seek to highlight how the complex background environment of the cell can affect the diffusion of substances within it. Engaging the subject from the perspective of a single particle's motion, we place the focus of our review on two areas: (1) experimental procedures for conducting single particle tracking experiments within cells along with methods for extracting information from these experiments; (2) theoretical factors affecting the translational diffusion of single molecules within crowded two-dimensional membrane and three-dimensional solution environments. We conclude by discussing a number of recent publications relating to intracellular diffusion in light of the reviewed material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号