首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradation of 2,4,6-trinitrotoluene (TNT): An enzymatic perspective   总被引:2,自引:0,他引:2  
Enzymatic degradation of TNT by aerobic bacteria is mediated by oxygen insensitive (Type 1) or by oxygen sensitive nitroreductases (Type II nitroreductases). Transformation by Type I nitroreductases proceeds through two successive electron reductions either by hydride addition to the aromatic ring or by direct nitro group reduction following a ping pong kinetic mechanism. TNT is reduced to the level of hydroxylaminodinitrotoluenes and aminodinitrotoluenes by pure enzyme preparations without achieving mineralization. Interestingly, database gene and amino acid sequence comparisons of nitroreductases reveal a close relationship among all enzymes involved in TNT transformation. They are all flavoproteins which use NADPH/NADH as electron donor and reduce a wide range of electrophilic xenobiotics. TNT degradation by fungi is initiated by mycelia bound nitroreductases which reduce TNT to hydroxylaminodinitrotoluenes and aminodinitrotoluenes. Further degradation of these products and mineralization is achieved through the activity of oxidative enzymes especially lignin degrading enzymes (lignin and manganese peroxidases).  相似文献   

2.
Three 2,4,6-trinitrotoluene (TNT) nitroreductases from Klebsiella sp. CI have different reduction capabilities that can degrade TNT by simultaneous utilization of two initial reduction pathways. Of these, nitroreductase II was purified to homogeneity by sequential chromatographies. Nitroreductase II is an oxygen-insensitive enzyme and reduces both TNT and nitroblue tetrazolium. The N-terminal amino acid sequence of the enzyme did not show any sequence similarity with those of other nitroreductases reported. However, it transformed TNT by the reduction of nitro groups like nitroreductase I. It had a higher substrate affinity and specific activity for TNT reduction than other nitroreductases, and it showed a higher oxidation rate of NADPH with the ortho-substituted isomers of TNT metabolites (2-hydroxylaminodinitrotoluene and 2-aminodinitrotoluene) than with para-substituted compounds (4-hydroxylaminodinitrotoluene and 4-amino-dinitrotoluene).  相似文献   

3.
Three NAD(P)H-dependent nitroreductases that can transform 2,4,6-trinitrotoluene (TNT) by two reduction pathways were detected in Klebsiella sp. C1. Among these enzymes, the protein with the highest reduction activity of TNT (nitroreductase I) was purified to homogeneity using ion-exchange, hydrophobic interaction, and size exclusion chromatographies. Nitroreductase I has a molecular mass of 27 kDa as determined by SDS-PAGE, and exhibits a broad pH optimum between 5.5 and 6.5, with a temperature optimum of 30–40°C. Flavin mononucleotide is most likely the natural flavin cofactor of this enzyme. The N-terminal amino acid sequence of this enzyme does not show a high degree of sequence similarity with nitroreductases from other enteric bacteria. This enzyme catalyzed the two-electron reduction of several nitroaromatic compounds with very high specific activities of NADPH oxidation. In the enzymatic transformation of TNT, 2-amino-4,6-dinitrotoluene and 2,2′,6,6′-tetranitro-4,4′-azoxytoluene were detected as transformation products. Although this bacterium utilizes the direct ring reduction and subsequent denitration pathway together with a nitro group reduction pathway, metabolites in direct ring reduction of TNT could not easily be detected. Unlike other nitroreductases, nitroreductase I was able to transform hydroxylaminodinitrotoluenes (HADNT) into aminodinitrotoluenes (ADNT), and could reduce ortho isomers (2-HADNT and 2-ADNT) more easily than their para isomers (4-HADNT and 4-ADNT). Only the nitro group in the ortho position of 2,4-DNT was reduced to produce 2-hydroxylamino-4-nitrotoluene by nitroreductase I; the nitro group in the para position was not reduced.  相似文献   

4.
Enzymatic degradation of TNT by aerobic bacteria is mediated by oxygen insensitive (Type 1) or by oxygen sensitive nitroreductases (Type II nitroreductases). Transformation by Type I nitroreductases proceeds through two successive electron reductions either by hydride addition to the aromatic ring or by direct nitro group reduction following a ping pong kinetic mechanism. TNT is reduced to the level of hydroxylaminodinitrotoluenes and aminodinitrotoluenes by pure enzyme preparations without achieving mineralization. Interestingly, database gene and amino acid sequence comparisons of nitroreductases reveal a close relationship among all enzymes involved in TNT transformation. They are all flavoproteins which use NADPH/NADH as electron donor and reduce a wide range of electrophilic xenobiotics. TNT degradation by fungi is initiated by mycelia bound nitroreductases which reduce TNT to hydroxylaminodinitrotoluenes and aminodinitrotoluenes. Further degradation of these products and mineralization is achieved through the activity of oxidative enzymes especially lignin degrading enzymes (lignin and manganese peroxidases).  相似文献   

5.
A gene encoding a UDP-glucose dehydrogenase homologue was identified in the hyperthermophilic archaeon, Pyrobaculum islandicum. This gene was expressed in Escherichia coli, and the product was purified and characterized. The expressed enzyme is the most thermostable UDP-glucose dehydrogenase so far described, with a half-life of 10 min at 90 °C. The enzyme retained its full activity after incubating in a pH range of 5.0-10.0 for 10 min at 80 °C. The temperature dependence of the kinetic parameters for this enzyme was examined at 37-70 °C. A decrease in K(m)s for UDP-glucose and NAD was observed with decreasing temperature. This resulted in the enzyme still retaining high catalytic efficiency (V(max)/K(m)) for the substrate and cofactor, even at 37 °C. These characteristics make the enzyme potentially useful for its application at a much lower temperature such as 37 °C than the optimum growth temperature of 100 °C for P. islandicum.  相似文献   

6.
An alkaline κ-carrageenase, Cgk-K142, was found in the culture broth of a deep-sea bacterium, Pseudoalteromonas tetraodonis JAM-K142. A gene for the enzyme was cloned and expressed. Purified recombinant Cgk-K142 (rCgk-K142) showed an optimal pH of about 8.8 in glycine-NaOH buffer at 30 °C and of about 8.0 in MOPS buffer at 50 °C. The optimal temperature for the enzyme was 55 °C at pH 8.0. rCgk-K142 was unstable, but λ- and ι-carrageenans, non-degradative substrate homologs, extensively enhanced its stability. The nucleotide sequence of the gene for Cgk-K142 comprised 1,194 bp, and the deduced amino acid sequence (397 amino acids) showed a high level of similarity to the κ-carrageenase of P. carrageenovora, with 94% identity. Another gene for a κ-carrageenase-like protein was found downstream of the gene for Cgk-K142. The nucleotide sequence of that gene consisted of 966 bp (321 amino acids), and it showed the highest similarity, at 64% identity, to protein CgkB of P. carrageenovora, which has been reported as an incomplete 57-amino acid sequence.  相似文献   

7.
A new thermostable β-glucosidase gene (bgl) from Chaetomium thermophilum CT2 was cloned, sequenced and expressed. The full-length DNA of bgl was 3,101 bp and included three introns. The full-length cDNA contained an open reading frame of 2,604-bp nucleotides, encoding 867 amino acids with a potential secretion signal. The C. thermophilum CT2 β-glucosidase gene was functionally expressed in Pichia pastoris. The purified recombinant β-glucosidase was a 119-kDa glycoprotein with an optimum catalytic activity at pH 5.0 and 60°C. The enzyme was stable at 50°C, and retained 67.7% activity after being kept at 60°C for 1 h; the half-time of the enzyme at 65°C was approximately 55 min, and even retained 29.7% activity after incubation at 70°C for 10 min.  相似文献   

8.
A gene encoding an NADPH-dependent carbonyl reductase from Neurospora crassa (nccr) was cloned and heterologously expressed in Escherichia coli. The enzyme (NcCR) was purified and biochemically characterised. NcCR exhibited a restricted substrate spectrum towards various ketones, and the highest activity (468U/mg) was observed with dihydroxyacetone. However, NcCR proved to be very selective in the reduction of different α- and β-keto esters. Several compounds were converted to the corresponding hydroxy ester in high enantiomeric excess (ee) at high conversion rates. The enantioselectivity of NcCR for the reduction of ethyl 4-chloro-3-oxobutanoate showed a strong dependence on temperature. This effect was studied in detail, revealing that the ee could be substantially increased by decreasing the temperature from 40 °C (78.8%) to -3 °C (98.0%). When the experimental conditions were optimised to improve the optical purity of the product, (S)-4-chloro-3-hydroxybutanoate (ee 98.0%) was successfully produced on a 300 mg (1.8 mmol) scale using NcCR at -3 °C.  相似文献   

9.
The "classical" nitroreductases of enteric bacteria are flavoproteins which catalyze the reduction of a variety of nitroaromatic compounds to metabolites which are highly toxic, mutagenic, or carcinogenic. The gene for the nitroreductase Enterobacter cloacae has now been cloned using an antibody specific to this protein. The nucleotide sequence of the structural gene and flanking regions are reported. Sequence analysis indicates that this gene belongs to a gene family of flavoproteins which have not been previously described. Analysis of the 5'-untranslated region reveals the presence of putative regulatory elements which may be involved in the modulation of the expression of this enzyme. The cloned gene was placed under the control of a T7 promoter for overexpression of the protein in Escherichia coli. The expressed recombinant protein was purified to homogeneity and exhibited physical, spectral, and catalytic properties identical to the protein isolated from E. cloacae.  相似文献   

10.
A membrane-associated chromate reductase from Thermus scotoductus SA-01 has been purified to apparent homogeneity and shown to couple the reduction of Cr(VI) to NAD(P)H oxidation, with a preference towards NADH. The chromate reductase is a homodimer with a monomeric molecular weight of 48 kDa and a noncovalently bound FAD coenzyme. The enzyme is optimally active at a pH of 6.5 and 65 degrees C with a K(m) of 55.5+/-4.2 microM and a V(max) of 2.3+/-0.1 micromol Cr(VI) min(-1) mg(-1) protein. The catalytic efficiency (k(cat)/K(m)) of the enzyme was found to be comparable to that found for quinone reductases but more efficient than the nitroreductases. N-terminal sequencing and subsequent screening of a genomic library of T. scotoductus revealed an ORF of 1386 bp, homologous (84%) to the dihydrolipoamide dehydrogenase gene of Thermus thermophilus HB8. These results extend the knowledge of chromate reductases mediating Cr(VI) reduction via noncovalently bound or free redox-active flavin groups and the activity of dihydrolipoamide dehydrogenases towards physiologically unrelated substrates.  相似文献   

11.
Among photosynthetic bacteria, strains B10 and E1F1 of Rhodobacter capsulatus photoreduce 2,4-dinitrophenol (DNP), which is stoichiometrically converted into 2-amino-4-nitrophenol by a nitroreductase activity. The reduction of DNP is inhibited in vivo by ammonium, which probably acts at the level of the DNP transport system and/or physiological electron transport to the nitroreductase, since this enzyme is not inhibited by ammonium in vitro. Using the complete genome sequence data for strain SB1003 of R. capsulatus, two putative genes coding for possible nitroreductases were isolated from R. capsulatus B10 and disrupted. The phenotypes of these mutant strains revealed that both genes are involved in the reduction of DNP and code for two major nitroreductases, NprA and NprB. Both enzymes use NAD(P)H as the main physiological electron donor. The nitroreductase NprA is under ammonium control, whereas the nitroreductase NprB is not. In addition, the expression of the nprB gene seems to be constitutive, whereas nprA gene expression is inducible by a wide range of nitroaromatic and heterocyclic compounds, including several dinitroaromatics, nitrofuran derivatives, CB1954, 2-aminofluorene, benzo[a]pyrene, salicylic acid, and paraquat. The identification of two putative mar/sox boxes in the possible promoter region of the nprA gene and the induction of nprA gene expression by salicylic acid and 2,4-dinitrophenol suggest a role in the control of the nprA gene for the two-component MarRA regulatory system, which in Escherichia coli controls the response to some antibiotics and environmental contaminants. In addition, upregulation of the nprA gene by paraquat indicates that this gene is probably a member of the SoxRS regulon, which is involved in the response to stress conditions in other bacteria.  相似文献   

12.
Buettner K  Hertel TC  Pietzsch M 《Amino acids》2012,42(2-3):987-996
The thermostability of microbial transglutaminase (MTG) of Streptomyces mobaraensis was further improved by saturation mutagenesis and DNA-shuffling. High-throughput screening was used to identify clones with increased thermostability at 55°C. Saturation mutagenesis was performed at seven "hot spots", previously evolved by random mutagenesis. Mutations at four positions (2, 23, 269, and 294) led to higher thermostability. The variants with single amino acid exchanges comprising the highest thermostabilities were combined by DNA-shuffling. A library of 1,500 clones was screened and variants showing the highest ratio of activities after incubation for 30 min at 55°C relative to a control at 37°C were selected. 116 mutants of this library showed an increased thermostability and 2 clones per deep well plate were sequenced (35 clones). 13 clones showed only the desired sites without additional point mutations and eight variants were purified and characterized. The most thermostable mutant (triple mutant S23V-Y24N-K294L) exhibited a 12-fold higher half-life at 60°C and a 10-fold higher half-life at 50°C compared to the unmodified recombinant wild-type enzyme. From the characterization of different triple mutants differing only in one amino acid residue, it can be concluded that position 294 is especially important for thermostabilization. The simultaneous exchange of amino acids at sites 23, 24, 269 and 289 resulted in a MTG-variant with nearly twofold higher specific activity and a temperature optimum of 55°C. A triple mutant with amino acid substitutions at sites 2, 289 and 294 exhibits a temperature optimum of 60°C, which is 10°C higher than that of the wild-type enzyme.  相似文献   

13.
The gene encoding a thermostable pectinase was isolated from a soil metagenome sample. The gene sequence corresponded to an open reading frame of 1,311 bp encoding a translation product of 47.9 kDa. It showed maximum (93 %) identity to a Bacillus licheniformis glycoside hydrolase. Deduced amino acid analysis showed an absence of highly conserved cysteine residues in the N-terminal region at positions 24 and 42, and in the C-terminal region at positions 389, 394, 413 and 424. pQpecJKR01 (pQE30 expression vector containing the pectinase gene) was expressed in Escherichia coli strain M15 as a recombinant fusion protein containing an N-terminal 6× His tag. Biochemical properties of this pectinase were novel. The enzyme had temperature and pH optima of 70 °C and 7.0, respectively, but was active over a broad temperature and pH range. The enzyme was stable at 60 °C with a half-life of 5 h and the enzyme activity was inhibited by 0.1 % diethyl pyrocarbonate and 5 mM dicyclohexyl carbodiimide. The enzyme could be of great use in industrial processes due to its activity over a broad pH range and at high temperature.  相似文献   

14.
This study investigated the effect of fiber hornification during drying on lignocellulosic substrate enzymatic saccharification. Two chemically pretreated wood substrates and one commercial bleached kraft hardwood pulp were used. Heat drying at 105 and 150°C and air drying at 50% RH and 23.8°C for different durations were applied to produce substrate with various degrees of hornification. It was found that substrate enzymatic digestibilities (SEDs) of hornified substrates made from the same never-dried sample correlate very well to an easily measurable parameter, water retention value (WRV), and can be fitted by a Boltzmann function. The hornification-produced SED reduction at a given degree of hornification as the percentage of the total SED reduction when the substrate is completely hornified depends on two parameters. The first is WRVˉ, which is primarily a function of the effective enzyme molecule size, and Δ, which is related to the substrate pore size distribution shape. The low values of SED(CH), SED of a completely hornified substrate, obtained from curve fittings for the three sets of samples studied, suggest that enzyme accessibility to cellulose is mainly through the pores in the cell wall rather than substrate external surface. The SEDs of hornified substrates were found to correlate to Simons' staining measurements well. A new parameter was proposed to better correlate enzyme accessibility to cellulose using the two-color Simons' staining technique.  相似文献   

15.
The gene encoding a carboxylesterase from Anoxybacillus sp., PDF1, was cloned and sequenced. The recombinant protein was expressed in Escherichia coli BL21, under the control of isopropyl-β-D-thiogalactopyranoside-inducible T7 promoter. The enzyme, designated as PDF1Est, was purified by heat shock and ion-exchange column chromatography. The molecular mass of the native protein, as determined by SDS-PAGE, was about 26 kDa. PDF1Est was active under a broad pH range (pH 5.0-10.0) and a broad temperature range (25-90 °C), and it had an optimum pH of 8.0 and an optimum temperature of 60 °C. The enzyme was thermostable carboxylesterase, and did not lose any activity after 30 min of incubation at 60 °C. The enzyme exhibited a high level of activity with p-nitrophenyl butyrate with apparent K(m), V(max), and K(cat) values of 0.348 ± 0.030 mM, 3725.8 U/mg, and 1500 ± 54.50/s, respectively. The effect of some chemicals on the esterase activity indicated that Anoxybacillus sp. PDF1 produce an carboxylesterase having serine residue in active site and -SH groups in specific sites, which are required for its activity.  相似文献   

16.
Variants of the Thermoascus aurantiacus Eg1 enzyme with higher catalytic efficiency than wild-type were obtained via site-directed mutagenesis. Using a rational mutagenesis approach based on structural bioinformatics and evolutionary analysis, two positions (F16S and Y95F) were identified as priority sites for mutagenesis. The mutant and parent enzymes were expressed and secreted from Pichia pastoris and the single site mutants F16S and Y95F showed 1.7- and 4.0-fold increases in k(cat) and 1.5- and 2.5-fold improvements in hydrolytic activity on cellulosic substrates, respectively, while maintaining thermostability. Similar to the parent enzyme, the two variants were active between pH 4.0 and 8.0 and showed optimal activity at temperature 70°C at pH 5.0. The purified enzymes were active at 50°C for over 12 h and retained at least 80% of initial activity for 2 h at 70°C. In contrast to the improved hydrolysis seen with the single mutation enzymes, no improvement was observed with a third variant carrying a combination of both mutations, which instead showed a 60% reduction in catalytic efficiency. This work further demonstrates that non-catalytic amino acid residues can be engineered to enhance catalytic efficiency in pretreatment enzymes of interest.  相似文献   

17.
Xylanase is an enzyme in high demand for various industrial applications, such as those in the biofuel and pulp and paper fields. In this study, xylanase-producing microbes were isolated from the gut of the wood-feeding termite at 50°C. The isolated microbe produced thermostable xylanase that was active over a broad range of temperatures (40-90°C) and pH (3.5-9.5), with optimum activity (4,170 ± 23.5 U mg?1) at 60°C and pH 4.5. The enzyme was purified using a strong cation exchanger and gel filtration chromatography, revealing that the protein has a molecular mass of 205 kDa and calculated pI of 5.38. The half-life of xylanase was 6 h at 60°C and 2 h at 90°C. The isolated thermostable xylanase differed from other xylanases reported to date in terms of size, structure, and mode of action. The novelty of this enzyme lies in its high specific activity and stability at broad ranges of temperature and pH. These properties suggest that this enzyme could be utilized in bioethanol production as well as in the paper and pulp industry.  相似文献   

18.
Among photosynthetic bacteria, strains B10 and E1F1 of Rhodobacter capsulatus photoreduce 2,4-dinitrophenol (DNP), which is stoichiometrically converted into 2-amino-4-nitrophenol by a nitroreductase activity. The reduction of DNP is inhibited in vivo by ammonium, which probably acts at the level of the DNP transport system and/or physiological electron transport to the nitroreductase, since this enzyme is not inhibited by ammonium in vitro. Using the complete genome sequence data for strain SB1003 of R. capsulatus, two putative genes coding for possible nitroreductases were isolated from R. capsulatus B10 and disrupted. The phenotypes of these mutant strains revealed that both genes are involved in the reduction of DNP and code for two major nitroreductases, NprA and NprB. Both enzymes use NAD(P)H as the main physiological electron donor. The nitroreductase NprA is under ammonium control, whereas the nitroreductase NprB is not. In addition, the expression of the nprB gene seems to be constitutive, whereas nprA gene expression is inducible by a wide range of nitroaromatic and heterocyclic compounds, including several dinitroaromatics, nitrofuran derivatives, CB1954, 2-aminofluorene, benzo[a]pyrene, salicylic acid, and paraquat. The identification of two putative mar/sox boxes in the possible promoter region of the nprA gene and the induction of nprA gene expression by salicylic acid and 2,4-dinitrophenol suggest a role in the control of the nprA gene for the two-component MarRA regulatory system, which in Escherichia coli controls the response to some antibiotics and environmental contaminants. In addition, upregulation of the nprA gene by paraquat indicates that this gene is probably a member of the SoxRS regulon, which is involved in the response to stress conditions in other bacteria.  相似文献   

19.
Cathodic current trends on stainless steel samples with different surface percentages covered by biofilm and potentiostatically polarized in natural seawater were studied under oxygen concentration changes, temperature increases, and additions of enzymic inhibitors to the solution. The results showed that on each surface fraction covered by biofilm the oxygen reduction kinetics resembled a reaction catalyzed by an immobilised enzyme with high oxygen affinity (apparent Michaelis-Menten dissociation constant close to K(O(2))(M) ≈?10 μM) and low activation energy (W ≈ 20 KJ mole(-1)). The proposed enzyme rapidly degraded when the temperature was increased above the ambient (half-life time of ~1 day at 25°C, and of a few minutes at 50°C). Furthermore, when reversible enzymic inhibitors (eg sodium azide and cyanide) were added, the cathodic current induced by biofilm growth was inhibited.  相似文献   

20.
Switchgrass (Panicum virgatum) was subjected to hydrothermolysis pretreatment and then used to study the effect of enzyme loading and temperature in a simultaneous saccharification and fermentation (SSF) with the thermotolerant yeast strain Kluyveromyces marxianus IMB3 at 8% solid loading. Various loadings of Accellerase 1500 between 0.1 and 1.1 mL g(-1) glucan were tested in SSF at 45 °C (activity of enzyme was 82.2 FPU mL(-1)). The optimum enzyme loading was 0.7 mL g(-1) glucan based on the six different enzyme loadings tested. SSFs were performed at 37, 41 and 45 °C with an enzyme loading of 0.7 mL g(-1) glucan. The highest ethanol concentration of 22.5 g L(-1) was obtained after 168 h with SSF at 45 °C, which was equivalent to 86% yield. Four different batch and fed-batch strategies were evaluated using a total solid loading of 12% (dry basis). About 32 g L(-1) ethanol was produced with the four strategies, which was equivalent to 82% yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号