首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In hemodilution, red cell spacing in the microcirculation is increased, flow distribution may become more heterogeneous, and, as a result, oxygen supply to tissues may suffer. We tested the hypothesis that oxygen extraction from diluted blood may be enhanced by the presence of hemoglobin in the plasma phase in relatively low concentrations. In anesthetized dogs, the hindlimb vascular bed was isolated and perfused with the animal's own blood by a roller pump. One group of dogs (n = 6) was hemodiluted (hematocrit = 15.0 +/- 1.0%) with a 6% solution of dextran. A second group of dogs (n = 6) was similarly hemodiluted (hematocrit = 16.0 +/- 0.4%) with dextran containing stroma-free hemoglobin solution whereby plasma-phase hemoglobin concentration was raised to 1.1 +/- 0.1 g.dL-1. Systemic hemodynamic observations were made repeatedly over the subsequent 2.5 h, while blood flow to the hindlimb was progressively reduced in stepwise decrements. The hemoglobin-hemodiluted group showed increased systemic arterial blood pressure and total peripheral resistance when compared with the control (dextran diluted) group. The isolated hindlimb also showed evidence of increased vascular resistance in the hemoglobin-treated group. In each individual animal, critical oxygen delivery and extraction were determined by finding the intercept of the supply-independent and supply-dependent portions of the oxygen uptake/oxygen delivery relationship. Neither the critical oxygen delivery rates (5.75 +/- 0.83 vs. 6.41 +/- 0.53 mL.kg-1.min-1) nor critical oxygen extraction ratios (0.75 +/- 0.03 vs. 0.76 +/- 0.04) were found to be significantly different in the two groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Blood flow in microvessels differs significantly from that of red blood cells (RBC) flowing through long, straight glass tubes in vitro. The in vivo situation is characterized by the presence of plasma favoring aggregation, by the irregular geometry of vessel segments, and by frequent branching points. Here, a method is presented to characterize flow patterns in microvascular blood flow during intravital microscopy based on Fourier analysis of recorded light intensity patterns. The interpretation of the resulting power spectra in terms of pattern size distribution was validated by model experiments employing artificial textures and by reverse transformation of idealized spectra. The determined size of RBC flow patterns in microvessels ranged from approximately 8 microm in capillaries to approximately 14 microm in vessels of >30 microm. With increasing shear rate above approximately 100 s(-1) pattern size increased, possibly reflecting formation of short-lived flow clusters. Below approximately 100 s(-1) an increase of pattern size with decreasing shear rate was found in experiments using local occlusion and treatment with high-molecular-weight dextran, suggesting the formation of aggregates. The dynamic process of generation and destruction of RBC flow patterns could well contribute to flow resistance in vivo in peripheral vascular beds.  相似文献   

3.
The viscoelastic behaviour of hardened or aggregated red blood cells is compared with the flow pattern of native red blood cells, all suspended in buffer solution at a hematocrit of 45%. The rheological properties are investigated under oscillatory shear at the constant frequency of 2Hz. Variation of the amplitude covers a range of shear-rates from 0.5/s to 200/s. It can be seen that rigidification of the red cells by treatment with glutardialdehyde leads to changes of the flow properties in the range of shear-rates above 10/s, whereas aggregate formation due to addition of dextran distinctly alters the flow properties in the range of shear-rates below 10/s.  相似文献   

4.
The turbulent flow properties of dilute (0.06% by volume) suspensions of human red blood cells in 4-mm-bore glass tubing were estimated by laser anemometry. The flow properties of the dilute red cell suspension were similar to those of a dilute suspension of polystyrene spheres (0.5 micron diameter) in isotonic NaCl solution. Flow was found to be laminar when the Reynolds number was below 2,000, transitional in the range of Reynolds numbers from 2,000 to 3,000, and fully turbulent above Reynolds number 3,000. These results differ from previous studies of more concentrated red cell suspensions. The length scales of the turbulence were also estimated: at a Reynolds number near 4,000 the macroscale is about 1.25 mm, the Taylor microscale is about 0.85 mm, and the Kolmogoroff scale is near 0.075 mm. The results are discussed in relation to previous measurements of the rate of oxygen uptake by dilute red cell suspensions in the flow-type rapid reaction apparatus. Our results suggest that under the conditions of most of these oxygen uptake measurements, the turbulent flow is characterized by eddies about 1 mm across, mixing with each other on a time scale of about 45 ms. Since most of the reported oxygen uptake measurements involve a similar time scale, it is possible that an effective "unstirred layer" influenced the reported rate of oxygen uptake.  相似文献   

5.
PGA1 and PGF2alpha were administered to isolated perfused porcine and canine livers to determine whether these hormones could induce hepatic choleresis. PGA1 (25 microgram/kg/10 min) decreased portal venous resistance, but had no effect on bile flow, oxygen, pyruvate, or lactate consumption in canine livers. PGF2alpha increased portal venous resistance and weight gain while decreasing bile flow and oxygen consumption in canine livers. At high doses (50 microgram/kg/10 min) these effects resulted in irreversible outflow block. At low doses (5 microgram/kg/10 min) these trends were reversible. Porcine livers did not exhibit the outflow block syndrome after PGF2alpha administration (100 microgram/kg/10 min); however, choleresis was not observed. Thus, the in-vivo choleretic effects of prostaglandins previously reported are probably mediated partially or wholly by extrahepatic release of other hormones, neurological stimulation or alterations in mesenteric blood flow.  相似文献   

6.
In previous studies we showed that intravenous infusion of Dextran 500 in the rat causes blunting of the velocity profile of red blood cells in venules at low shear rates. To determine whether this blunting is associated with the formation of red blood cell aggregates, we measured the length and width of particles in the venular flow stream at systemic hematocrits up to 20% with a high-speed video camera and a new image analysis technique. Data were obtained at various shear rates under normal (nonaggregating) conditions as well as after infusion of Dextran 500. Under normal conditions, particle length (parallel to the vessel axis) was 6.5 +/- 2.7 microm and width (perpendicular to the axis) was 6.1 +/- 1.7 microm, in agreement with published dimensions of individual red blood cells for this species. After Dextran 500 infusion, particle length and width increased significantly to 8.7 +/- 5.1 and 10.4 +/- 4.4 microm, respectively. Particle dimensions were greater in the central region of the flow stream for both normal and dextran-treated blood and increased at low flow rates with dextran-treated blood. This study provides direct confirmation of aggregate formation at low shear in venules with high-molecular-weight dextran as well as an estimate of aggregate size and range.  相似文献   

7.
Studies were carried out in seven anesthetized paralyzed dogs to examine the importance of alpha -adrenergic tone in the cardiovascular responses during acute anemia. Data were obtained 1) at normal hematocrit (Hct), 2) during anemia produced by isovolemic hemodilution with dextran (Hct, 13-15%), 3) during anemia after alpha -blockade (alpha -bl) with phenoxybenzamine (3 mg/kg), and 4) following volume expansion during anemia with a red blood cell dextran solution. Cardiac output (QT), limb and total body oxygen uptake (VO2), and limb blood flow (QL) were determined. Both QT and QL increased during anemia (P less than 0.01), whereas limb resistance (RL) and total peripheral resistance (TPR) were decreased (P less than 0.01). No further change in either RL or TPR occurred with alpha -blockade anemia, but both QT and QL decreased (P less than 0.01). Whole-body VO2 increased during anemia and then declined with alpha -bl and anemia. Following volume expansion during anemia with alpha -bl, QT, QL, and whole-body VO2 increased. We conclude that alpha -adrenergic sympathetic tone to capacitance vessels is essential for the cardiac output increased during anemia, but has little or no effect on resistance vessels and hence distribution of peripheral blood flow.  相似文献   

8.
Cultures with immobilized hybridoma cells were performed in fixed bed systems. "Steady state" values for volume-specific substrate uptake and metabolite production rates were determined at various perfusion rates and superficial flow velocities of the medium within the carrier matrix. Data from fixed bed volumes between 50 and 600 ml did not show any difference. The volume-specific glutamine and glucose uptake rate turned out to be independent of the superficial flow velocity, but decreased with decreasing glutamine and glucose concentration. The volume-specific oxygen uptake rate increased with increasing superficial flow velocity and substrate concentration, respectively. A similar behavior was observed for the ratio between oxygen and glucose uptake rate. The production rate for monoclonal antibodies was neither affected by the substrate concentration nor by the superficial flow velocity. The metabolic parameters of the immobilized cells were put into kinetic equations and compared to those of suspended cells. It could be concluded that the metabolism of the immobilized cells is determined by the oxygen supply within the macroporous carriers. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 535-541, 1997.  相似文献   

9.
The purpose of this experiment was to determine whether fluid ingestion attenuates the hyperthermia and cardiovascular drift that occurs during exercise dehydration due to increases in blood volume. In addition, forearm blood flow, which is indicative of skin blood flow, was measured to determine whether the attenuation of hyperthermia and cardiovascular drift during exercise with fluid ingestion is due to higher skin blood flow. On three different occasions, seven trained cyclists [mean age, body weight, and maximum oxygen uptake: 23 +/- 3 yr, 73.9 +/- 10.5 kg, and 4.75 +/- 0.34 (SD) l/min, respectively] cycled at a power output equal to 62-67% maximum oxygen uptake for 2 h in a warm environment (33 degrees C, 50% relative humidity, wind speed 2.5 m/s). During exercise, they randomly received no fluid (NF) or a volume of a carbohydrate-electrolyte fluid replacement solution (FR) sufficient to replace 80 +/- 2% of sweat loss or were intravenously infused with 5.3 ml/kg of a blood volume expander (BVX; 6% dextran in saline). The infusion of 398 +/- 23 ml of BVX maintained blood volume at levels similar to that when 2,404 +/- 103 ml of fluid were ingested during FR and greater than that when no fluid was ingested during the 2nd h of exercise (P less than 0.05). However, BVX and NF resulted in similar esophageal and rectal temperatures, forearm blood flow, and elevations in serum osmolality and sodium concentration during 2 h of exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
1. Lactate and O2 uptake and glucose output were studied in isolated livers from starved rats at perfusate flow rates varying from 100 to 7% of "normal" (11.25-0.75 ml/min per 100 g body wt.). 2. With moderate diminution of flow rate, lactate and oxygen uptake fell more slowly than would be expected if uptake purely depended on substrate supply. 3. Use of a mathematical model suggests that the intrinsic capacity of the liver for lactate uptake is unaffected until the flow rate falls below 25% of "normal". 4. Some lactate uptake was always observed even at 7% of the "normal" flow rate. 5. At flow rates below 33% of the "normal", lactate was increasingly metabolized by pathways other than gluconeogenesis, which became a progressively less important consumer of available O2. 6. ATP content decreased with diminution of flow rate, but substantially less markedly than did lactate uptake and glucose output. 7. Intracellular pH fell from a mean value of 7.25 at "normal" flow rate to 7.03 at 7% of the "normal" flow rate.  相似文献   

11.
Recently, we reported that collision efficiency (fraction of total collisions that result in the formation of aggregates) between red blood cells was an important factor in the formation of aggregates in postcapillary venules. In the present study, we focus on how high molecular weight dextran influences the overall radial migration trend of red blood cells in the postcapillary venule along a longitudinal distance of 50 μm from the bifurcation which would in turn affect collision behavior of these cells. A radial migration index, which defines the extent of radial migration of individual cells relative to the vessel center, was found to have a larger magnitude after infusion of dextran (1.9 ± 2.73) compared to that before dextran infusion (1.48 ± 3.89). This implied that dextran-induced aggregation might provide an external force to actively move cells towards the centerline of the vessel, which could contribute to the greater number of red blood cells participating in collision (16% increase) and aggregate formation. Further analysis of the collision behavior of individual red blood cells revealed that collision frequencies of individual cells decreased from a wide range (1 to 14) to a narrow range (1 to 5) after dextran treatment, indicating the alteration of collision behavior of red blood cells by the presence of aggregates along the flow stream.  相似文献   

12.
Axl, a plasma membrane-associated Tyro3/Axl/Mer (TAM) family member, is necessary for optimal Zaire ebolavirus (ZEBOV) glycoprotein (GP)-dependent entry into some permissive cells but not others. To date, the role of Axl in virion entry is unknown. The focus of this study was to characterize entry pathways that are used for ZEBOV uptake in cells that require Axl for optimal transduction and to define the role of Axl in this process. Through the use of biochemical inhibitors, interfering RNA (RNAi), and dominant negative constructs, we demonstrate that ZEBOV-GP-dependent entry into these cells occurs through multiple uptake pathways, including both clathrin-dependent and caveola/lipid raft-mediated endocytosis. Other dynamin-dependent and -independent pathways such as macropinocytosis that mediate high-molecular-weight dextran uptake also stimulated ZEBOV-GP entry into these cells, and inhibitors that are known to block macropinocytosis inhibited both dextran uptake and ZEBOV infection. These findings provided strong evidence for the importance of this pathway in filovirus entry. Reduction of Axl expression by RNAi treatment resulted in decreased ZEBOV entry via macropinocytosis but had no effect on the clathrin-dependent or caveola/lipid raft-mediated endocytic mechanisms. Our findings demonstrate for the first time that Axl enhances macropinocytosis, thereby increasing productive ZEBOV entry.  相似文献   

13.
The possible mechanisms underlying the acquisition of an increased ascorbic acid content by mouse erythrocytes containing the malarial parasite Plasmodium vinckei were investigated. Ascorbic acid was taken up readily by parasitized red blood cells but not by controls, whilst its partly oxidized form, dehydroascorbic acid, entered both. The uptake of both ascorbic acid and dehydroascorbic acid into erythrocytes was increased as a result of malarial infection. Lysates prepared from parasitized red blood cells reduced exogenous dehydroascorbic acid to ascorbic acid at a higher rate than control red blood cell lysates; this difference was abolished following dialysis of the lysates, a process which removes endogenous reduced glutathione (GSH). The rates of chemical and enzymatic reduction of dehydroascorbic acid to ascorbic acid by GSH were of similar magnitude, thus calling into question the existence of a specific dehydroascorbate reductase in erythrocytes and parasites. These observations suggest that the increased uptake of dehydroascorbic acid into parasitized red blood cells may be a result of enhanced dehydroascorbate-reducing capacity, whilst the presence of the parasite induces a selective increase in the permeability of the erythrocyte plasma membrane to ascorbic acid. The endogenous ascorbic acid content of livers obtained from infected mice was 55% below the normal concentration and its relative rate of destruction during incubation in vitro was enhanced in comparison with that of control livers. Furthermore, the capacity of liver homogenates to synthesize ascorbic acid from glucuronic acid was greatly reduced in infected mice. Therefore it is unlikely that the increase in ascorbic acid content of parasitized red blood cells is a consequence of increased biosynthesis and release of ascorbic acid by the host liver. We have not been able to exclude the possibility that the malarial parasite itself may be capable of de novo synthesis of ascorbic acid.  相似文献   

14.
The effects of substituting an infusion of salbutamol for isoprenaline were studied in 12 patients needing circulatory support after valve replacement surgery. The cardiac output rose while the heart rate remained unaltered. There was a reduction in systemic vascular resistance, and though the oxygen uptake tended to rise the increase in cardiac output was proportionately greater so that the arteriovenous oxygen difference fell.It is suggested that the drug is of value for two reasons. It causes a selective reduction in peripheral arteriolar resistance, which avoids peripheral pooling, but permits limited myocardial work to be used to generate flow rather than pressure, and the increase in cardiac output is not accompanied by a corresponding rise in oxygen uptake.  相似文献   

15.
Gluconeogenesis predominates in periportal regions of the liver lobule   总被引:2,自引:0,他引:2  
Rates of gluconeogenesis from lactate were calculated in periportal and pericentral regions of the liver lobule in perfused rat livers from increases in O2 uptake due to lactate. When lactate (0.1-2.0 mM) was infused into livers from fasted rats perfused in either anterograde or the retrograde direction, a good correlation (r = 0.97) between rates of glucose production and extra O2 uptake by the liver was observed as expected. Rates of oxygen uptake were determined subsequently in periportal and pericentral regions of the liver lobule by placing miniature oxygen electrodes on the liver surface and measuring the local change in oxygen concentration when the flow was stopped. Basal rates of oxygen uptake of 142 +/- 11 and 60 +/- 4 mumol X g-1 X h-1 were calculated for periportal and pericentral regions, respectively. Infusion of 2 mM lactate increased oxygen uptake by 71 mumol X g-1 X h-1 in periportal regions and by 29 mumol X g-1 X h-1 in pericentral areas of the liver lobule. Since the stoichiometry between glucose production and extra oxygen uptake is well-established, rates of glucose production in periportal and pericentral regions of the liver lobule were calculated from local changes in rates of oxygen uptake for the first time. Maximal rates of glucose production from lactate (2 mM) were 60 +/- 7 and 25 +/- 4 mumol X g-1 X h-1 in periportal and pericentral zones of the liver lobule, respectively. The lactate concentrations required for half-maximal glucose synthesis were similar (0.4-0.5 mM) in both regions of the liver lobule in the presence or absence of epinephrine (0.1 microM). In the presence of epinephrine, maximal rates of glucose production from lactate were 79 +/- 5 and 59 +/- 3 mumol X g-1 X h-1 in periportal and pericentral regions, respectively. Thus, gluconeogenesis from lactate predominates in periportal areas of the liver lobule during perfusion in the anterograde direction; however, the stimulation by added epinephrine was greatest in pericentral areas. Differences in local rates of glucose synthesis may be due to ATP availability, as a good correlation between basal rates of O2 uptake and rates of gluconeogenesis were observed in both regions of the liver lobule in the presence and absence of epinephrine. In marked contrast, when livers were perfused in the retrograde direction, glucose production was 28 +/- 5 mumol X g-1 X h-1 in periportal areas and 74 +/- 6 mumol X g-1 X h-1 in pericentral regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The importance of alpha-adrenergic receptors in the cardiac output and peripheral circulatory responses to carbon monoxide (CO) hypoxia was studied in anesthetized dogs. Phenoxybenzamine (3 mg/kg i.v.) was injected to block alpha-receptor activity and the data obtained were then compared with those from a previous study of CO hypoxia in unblocked animals. Values for cardiac output, hindlimb blood flow, vascular resistance, and oxygen uptake were obtained prior to and at 30 and 60 min of CO hypoxia which reduced arterial oxygen content by approximately 50%. alpha-Adrenergic blockade resulted in a lower (p less than 0.05) control value for cardiac output than observed in unblocked animals, but no differences were present between the two groups at 30 or 60 min of CO hypoxia. Similarly, limb blood flow was lower (p less than 0.05) during the control period in the alpha-blocked group but rose to the same level as that in the unblocked animals at 60 min of COH. No change in limb blood flow occurred during CO hypoxia in the unblocked group. These findings demonstrated that during CO hypoxia alpha-receptor mediated venoconstriction does not contribute to the cardiac output response and alpha-receptor mediated vasoconstriction probably does prevent a rise in hindlimb skeletal muscle blood flow.  相似文献   

17.
Membrane bilayer balance and erythrocyte shape: a quantitative assessment   总被引:5,自引:0,他引:5  
J E Ferrell  K J Lee  W H Huestis 《Biochemistry》1985,24(12):2849-2857
When human erythrocytes are incubated with certain phospholipids, the cells become spiculate echinocytes, resembling red cells subjected to metabolic starvation or Ca2+ loading. The present study examines (1) the mode of binding of saturated phosphatidylcholines and egg lysophosphatidylcholine to erythrocytes and (2) the quantitative relationship between phospholipid incorporation and red cell shape. We find that the phospholipids studied become intercalated into erythrocyte membranes, not simply adsorbed to the cell surface. Spin-labeling and radiolabeling data show that the incorporation of (4 +/- 1) X 10(6) molecules of exogenous phosphatidylcholine per cell converts discocytes to stage 3 echinocytes with about 35 conical spicules. This amount of lipid incorporation is estimated to expand the red cell membrane outer monolayer by 1.7% +/- 0.6%. Calculations of the inner and outer monolayer surface areas of model discocytes and stage 3 echinocytes yield an estimated difference of 0.7% +/- 0.2%.  相似文献   

18.
L M Chi  W G Wu 《Biophysical journal》1990,57(6):1225-1232
When human erythrocytes are treated with exogenous monopalmitoyl phosphatidylcholine (MPPC), the normal biconcave disk shape red blood cells (RBC) become spiculate echinocytes. The present study examines the quantitative aspect of the relationship between effective bilayer expansion and erythrocyte shape change by a newly developed method. This method is based on the combination of direct surface area measurement of micropipette and relative bilayer expansion measurement of 13C crosspolarization/magic angle spinning nuclear magnetic resonance (NMR). Assuming that 13C NMR chemical shift of fatty acyl chain can be used as an indicator of lateral packing of membrane bilayers, it is possible for us to estimate the surface area expansion of red cell membrane induced by MPPC from that induced by ethanol. Partitions of lipid molecules into cell membrane were determined by studies of shape change potency as a function of MPPC and red cell concentration. It is found that 8(+/- 0.5) x 10(6) molecules of MPPC per cell will effectively induce stage three echinocytes and yield 3.2(+/- 0.2)% expansion of outer monolayer surface area. Surface area of normal cells determined by direct measurements from fixed geometry of red cells aspirated by micropipette was 118.7 +/- 8.5 microns2. The effective cross-sectional area of MPPC molecules in the cell membrane therefore was determined to be 48(+/- 4) A2, which is in agreement with those determined by x-ray from model membranes and crystals of lysophospholipids. We concluded that surface area expansion of RBC can be explained by a simple consideration of cross-sectional area of added molecules and that erythrocyte shape changes correspond quantitatively to the incorporated lipid molecules.  相似文献   

19.
Flow analysis at microvascular bifurcation after partial replacement of red blood cell (RBC) with liposome-encapsulated hemoglobin (LEH) was performed using the lattice Boltzmann method. A two-dimensional symmetric Y bifurcation model with a parent vessel diameter of 20 mum and daughter branch diameters of 20 microm was considered, and the distributions of the RBC, LEH, and oxygen fluxes were calculated. When only RBCs flow into the daughter branches with unevenly distributed flows, plasma separation occurred and the RBC flow to the lower-flow branch was disproportionately decreased. On the other hand, when half of RBC are replaced by LEH, the biasing of RBC flow was enhanced whereas LEH flowed favorably into the lower-flow branch, because many LEH within the parent vessel are suspended in the plasma layer, where no RBCs exist. Consequently, the branched oxygen fluxes became nearly proportional to flows. These results indicate that LEH facilitates oxygen supply to branches that are inaccessible to RBCs.  相似文献   

20.
D Sacco  E Dellacherie 《FEBS letters》1986,199(2):254-258
Interactions of dextran sulfate with amino groups of oxy- and deoxyhemoglobin were followed by both potentiometric measurements between pH 6 and 7.3 and oxygen-binding studies. The uptake of protons observed upon addition of dextran sulfate to hemoglobin shows that the interaction with the deoxy form is strong and that the main site is probably located in the phosphate-binding beta-cavity, whereas the interaction with the oxy form is more diffuse, probably with a great number of relatively weak binding sites. The influence of dextran sulfate on the oxygen dissociation curve of hemoglobin confirms these findings, as the effect of the polymer is to lower hemoglobin affinity for oxygen to a great extent, which proves that it stabilizes the deoxy form more strongly than the oxy one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号