首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Three low-molecular-weight (LMW) glutenin-like genes (designated as Ssy1, Ssy2, and Ssy3) from Secale sylvestre Host were isolated and characterized. The three genes consist of a predicted highly conservative signal peptide with 20 amino acids, a short N-terminal region with 13 amino acids, a highly variable repetitive domain and a less variable C-terminal domain. The deduced amino acid sequences of the three genes were the LMW-m type due to a methionine residue at the N-terminus. The phylogenetic analysis indicated that the prolamin genes could be perfectly clustered into five groups, including HMW-GS, LMW-GS, α/β-, γ-, and κ-prolamin. The LMW glutenin-like genes of S. sylvestre were more orthologous with the LMW-GS genes of wheat and B hordein genes of barley, which also had been confirmed by the homology analysis with the LMW-GS of wheat at Glu-A3, Glu-B3, and Glu-D3 loci. These results indicated that a chromosome locus (designated as Glu-R3) might be located on the R genome of S. sylvestre with the functions similar to the Glu-3 locus in wheat and its related species.  相似文献   

2.
Identification of LMW glutenin-like genes from Secale sylvestre host   总被引:2,自引:0,他引:2  
Shang HY  Wei YM  Long H  Yan ZH  Zheng YL 《Genetika》2005,41(12):1656-1664
Three low-molecular-weight (LMW) glutenin-like genes (designated as Ssy1, Ssy2 and Ssy3) from Secale sylvestre Host were isolated and characterized. The three genes consist of a predicted highly conservative signal peptide with 20 amino acids, a short N-terminal region with 13 amino acids, a highly variable repetitive domain and a less variable C-terminal domain. The deduced amino acid sequences of the three genes were the LMW-m type due to a methionine residue at the N-terminus. The phylogenic analysis indicated that the prolamin genes could be perfectly clustered into five groups, including HMW-GS, LMW-GS, alpha/beta-, gamma- and omega-prolamin. The LMW glutenin-like genes of S. sylvestre were more orthologous with the LMW-GS genes of wheat and B hordein genes of barley, which also had been confirmed by the homology analysis with the LMW-GS of wheat at Glu-A3, Glu-B3 and Glu-D3 loci. These results indicated that a chromosome locus (designated as Glu-R3) might be located on the R genome of S. sylvestre with the functions similar to the Glu-3 locus in wheat and its related species.  相似文献   

3.
 The isolation and characterisation by DNA sequencing of two different low molecular weight glutenin subunit (LMW-GS) genes from a genomic library derived from Triticum tauschii is described. These genes are similar (more than 90% similarity) but not identical to previously published LMW-GS gene sequences from cultivated wheats. A comparison of nucleotide sequence of the coding regions revealed the presence of insertions and deletions preferentially located in the region encoding the domains in the LMW-GS proteins rich in proline and glutamine and the middle part of the C-domain. The signal sequences, the amino-terminus and the remaining parts of the C-domain were conserved between all the LMW-GSs compared. The differences detected between the deduced amino-acid sequences in these three regions are only due to single nucleotide substitutions. The most important characteristic of all compared LMW-GS genes is the conservation of eight cysteine residues that could be involved in potential secondary or tertiary structure and disulphide-bond interactions. Comparisons between the 5′ and 3′ non-coding sequences of one of the isolated clones (LMW-16/10) with those of different prolamin genes from wheat, barley and rye led to the distinction of five different gene families, and confirmed the evolutionary relationships determined previously for these genes mainly on the basis of the coding region. In particular, the LMW-GS sequences are more closely related to the B-hordein sequences than to any other prolamin genes from wheat, barley and rye. Formal proof that the isolated genes coded for LMW-GSs, as defined by gel electrophoresis, was obtained by moving one of these genes (LMW-16/10) into a bacterial expression vector based on bacteriophage T7 RNA polymerase. The resulting plasmid directed the synthesis of large amounts of the mature form of the subunit in Escherichia coli. This protein exhibited solubility characteristics identical to those of the LMW-GSs and cross-reacted with antibodies reactive with these proteins. Received: 24 November 1997 / Accepted: 18 August 1998  相似文献   

4.
5.
Although it is well known that low-molecular-weight glutenin subunits (LMW-GS) from wheat affect bread and noodle processing quality, the function of specific LMW-GS proteins remains unclear. It is important to find the genes that correspond to individual LMW-GS proteins in order to understand the functions of specific proteins. The objective of this study was to link LMW-GS genes and haplotypes characterized using well known Glu-A3, Glu-B3, and Glu-D3 gene-specific primers to their protein products in a single wheat variety. A total of 36 LMW-GS genes and pseudogenes were amplified from the Korean cultivar Keumkang. These include 11 Glu-3 gene haplotypes, two from the Glu-A3 locus, two from the Glu-B3 locus, and seven from the Glu-D3 locus. To establish relationships between gene haplotypes and their protein products, a glutenin protein fraction was separated by two-dimensional gel electrophoresis (2-DGE) and 17 protein spots were analyzed by N-terminal amino acid sequencing and tandem mass spectrometry (MS/MS). LMW-GS proteins were identified that corresponded to all Glu-3 gene haplotypes except the pseudogenes. This is the first report of the comprehensive characterization of LMW-GS genes and their corresponding proteins in a single wheat cultivar. Our approach will be useful to understand the contributions of individual LMW-GS to the end-use quality of flour.  相似文献   

6.
Low-molecular-weight glutenin subunits (LMW-GSs) play an important role in determining the bread-making quality of bread wheat. However, LMW-GSs display high polymorphic protein complexes encoded by multiple genes, and elucidating the complex LMW-GS gene family in bread wheat remains challenging. In the present study, using conventional polymerase chain reaction (PCR) with conserved primers and high-resolution capillary electrophoresis, we developed a new molecular marker system for identifying LMW-GS gene family members. Based on sequence alignment of 13 LMW-GS genes previously identified in the Chinese bread wheat variety Xiaoyan 54 and other genes available in GenBank, PCR primers were developed and assigned to conserved sequences spanning the length polymorphism regions of LMW-GS genes. After PCR amplification, 17 DNA fragments in Xiaoyan 54 were detected using capillary electrophoresis. In total, 13 fragments were identical to previously identified LMW-GS genes, and the other 4 were derived from unique LMW-GS genes by sequencing. This marker system was also used to identify LMW-GS genes in Chinese Spring and its group 1 nulli–tetrasomic lines. Among the 17 detected DNA fragments, 4 were located on chromosome 1A, 5 on 1B, and 8 on 1D. The results suggest that this marker system is useful for large-scale identification of LMW-GS genes in bread wheat varieties, and for the selection of desirable LMW-GS genes to improve the bread-making quality in wheat molecular breeding programmes.  相似文献   

7.
Extensive genetic variations of low-molecular-weight glutenin subunits (LMW-GS) and their coding genes were found in the wild diploid A- and D-genome donors of common wheat. In this study, we reported the isolation and characterization of 8 novel LMW-GS genes fromAe.longissima Schweinf. & Muschl., a species of the sectionSitopsis of the genusAegilops, which is closely related to the B genome of common wheat. Based on the N-terminal domain sequences, the 8 genes were divided into 3 groups. A consensus alignment of the extremely conserved domains with known gene groups and the subsequent cluster analysis showed that 2 out of the 3 groups of LMW-GS genes were closely related to those from the B genome, and the remaining was related to those from A and D genomes of wheat andAe. tauschii. Using 3 sets of gene-group-specific primers, PCRs in diploid, tetraploid and hexaploid wheats andAe. tauschii failed to obtain the expected products, indicating that the 3 groups of LMW-GS genes obtained in this study were new members of LMW-GS multi-gene families. These results suggested that theSitopsis species of the genusAegilops with novel gene variations could be used as valuable gene resources of LMW-GS. The 3 sets of group-specific primers could be utilized as molecular markers to investigate the introgression of novel alien LMW-GS genes fromAe. longissima into wheat.  相似文献   

8.
On the basis of sequence analysis, 69 known low-molecular-weight glutenin subunit (LMW-GS) genes were experimentally classified into nine groups by the deduced amino acid sequence of the highly conserved N-terminal domain. To clarify the chromosomal locations of these groups, 11 specific primer sets were designed to carry out polymerase chain reactions (PCR) with the genomic DNA of group 1 ditelosomic lines of Chinese Spring, among which nine primer sets proved to be LMW-GS group-specific. Each group of LMW-GS genes was specifically assigned on a single chromosome arm and hence to a specific locus. Therefore, these results provided the possibility to predict the chromosome location of a new LMW-GS gene based on its deduced N-terminal sequence. The validity of the classification was confirmed by the amplifications in 27 diploid wheat and Aegilops accessions. The length polymorphisms of LMW-GS genes of groups 1 and 2, and groups 3 and 4.1 were detected in diploid A-genome and S-genome accessions, respectively. The diploid wheat and Aegilops species could be used as valuable resources of novel allele variations of LMW-GS gene in the improvement of wheat quality. The nine LMW-GS group-specific primer sets could be utilized to select specific allele variations of LMW-GS genes in the marker-assisted breeding. Electronic Supplementary Material Supplementary material is available for this article at Hai Long and Yu-Ming Wei are the two authors who have contributed equally to this paper  相似文献   

9.
D hordein, a prolamin storage protein of barley endosperms, is highly homologous to the high molecular weight (HWM) glutenin subunits, which are the major determinants of bread-making quality in wheat flour. In hexaploid wheat (AABBDD), each genome contains two paralogous copies of HMW-glutenin genes that encode the x- and y-type HMW-glutenin subunits. Previously, we reported the sequence analysis of a 102-kb genomic region that contains the HMW-glutenin locus of the D genome from Aegilops tauschii, the donor of the D genome of hexaploid wheat. Here, we present the sequence analysis of a 120-kb D-hordein region of the barley genome, a more distantly related member of the Triticeae grass tribe. Comparative sequence analysis revealed that gene content and order are generally conserved. Genes included in both of these orthologous regions are arranged in the following order: a Xa21-like receptor kinase, an endosperm globulin, an HMW prolamin, and a serine (threonine) protein kinase. However, in the wheat D genome, a region containing both the globulin and HMW-glutenin gene was duplicated, indicating that this duplication event occurred after the separation of the wheat and barley genomes. The intergenic regions are divergent with regard to the sequence and structural organization. It was found that different types of retroelements are responsible for the intergenic structure divergence in the wheat and barley genomes. In the barley region, we identified 16 long terminal repeat (LTR) retrotransposons in three distinct nested clusters. These retroelements account for 63% of the contig sequence. In addition, barley D hordein was compared with wheat HMW glutenins in terms of cysteine residue conservation and repeat domain organization.  相似文献   

10.
Characterization of two HMW glutenin subunit genes from Taenitherum Nevski   总被引:1,自引:0,他引:1  
Yan ZH  Wei YM  Wang JR  Liu DC  Dai SF  Zheng YL 《Genetica》2006,127(1-3):267-276
The compositions of high molecular weight (HMW) glutenin subunits from three species of Taenitherum Nevski (TaTa, 2n = 2x = 14), Ta. caput-medusae, Ta. crinitum and Ta. asperum, were investigated by SDS-PAGE analysis. The electrophoresis mobility of the x-type HMW glutenin subunits were slower or equal to that of wheat HMW glutenin subunit Dx2, and the electrophoresis mobility of the y-type subunits were faster than that of wheat HMW glutenin subunit Dy12. Two HMW glutenin genes, designated as Tax and Tay, were isolated from Ta. crinitum, and their complete nucleotide coding sequences were determined. Sequencing and multiple sequences alignment suggested that the HMW glutenin subunits derived from Ta. crinitum had the similar structures to the HMW glutenin subunits from wheat and related species with a signal peptide, and N- and C-conservative domains flanking by a repetitive domain consisted of the repeated short peptide motifs. However, the encoding sequences of Tax and Tay had some novel modification compared with the HMW glutenin genes reported so far: (1) A short peptide with the consensus sequences of KGGSFYP, which was observed in the N-terminal of all known HMW glutenin genes, was absent in Tax; (2) There is a specified short peptide tandem of tripeptide, hexapeptide and nonapeptide and three tandem of tripeptide in the repetitive domain of Tax; (3) The amino acid residues number is 105 (an extra Q presented) but not 104 in the N-terminal of Tay, which was similar to most of y-type HMW glutenin genes from Elytrigia elongata and Crithopsis delileana. Phylogenetic analysis indicated that Tax subunit was mostly related to Ax1, Cx, Ux and Dx5, and Tay was more related to Ay, Cy and Ry.  相似文献   

11.
Wild tall wheatgrass (Lophopyrum elongatum L., 2x = 14) is an important resource for improving bread wheat (Titicum aestivum L.), including HMW-GS and LMW-GS relevant to end-use quality of the wheat flour. A set of 14 distinct sequences were amplified from the genomic DNA of the tall wheatgrass, using degenerate primers targeted at Glu-3, the locus containing the genes encoding the low-molecular weight glutenin subunits (LMW-GS). Three sequences contained an internal stop codon and were classified as pseudogenes. The other 11 all consisted of a single intron-less intact open-reading frame. An alignment of deduced protein sequences showed that the primary structure of all 11 sequences was similar to that of wheat and other wheat-related grass Glu-3 genes. All 11 sequences carried the 14 amino acid residue N-terminal motif MESNIIISFLK/RPWL, and were classified as LMW-m genes, based on the identity of the first amino acid of the mature protein. All but one of the sequences contained seven cysteine residues (the exception had 6). Their repetitive domain differs significantly from that present in Glu-3 genes isolated from the close relative intermediate wheatgrass (Thinopyrum Intermedium, 6x). A phylogenetic analysis showed that the tall wheatgrass sequences were closely related to those of the intermediate wheatgrass, but only distantly so to those from decaploid tall wheatgrass. One of the 11 LMW-GS peptides with a free-cysteine residue was heterologously expressed in E. coli and purified in sufficient scale to perform a flour supplementation test. This showed that the dough strength of bread wheat flour was significantly increased by the presence of the tall wheatgrass LMW-GS.  相似文献   

12.
Three low-molecular-weight glutenin subunit (LMW-GS) genes, designated LMW-Td1, LMW-Td2 and LMW-Td3, were isolated from wild emmer wheat (Triticum dicoccoides), which is the tetraploid progenitor of common wheat (T. aestivum). The complete nucleotide sequence lengths of LMW-Td1, LMW-Td2 and LMW-Td3 are 858, 900 and 1062 bp, respectively. LMW-Td1 and LMW-Td3 can encode proteins with 284 and 352 amino acid residues, respectively, whereas LMW-Td2 is a putative pseudogene due to the presence of 3 inframe stop codons in its C-terminal domain. The deduced protein sequences of the 3 genes share the same typical polypeptide structures with known LMW-GS genes containing 8 cysteines in the mature protein domains. LMW-Td1 was clearly distinguished from all known LMW-GS genes, and considered as a novel LMW-GS gene. Two hydrophobic motifs (i.e. PIIIL and PVIIL) were observed in the repetitive domain of LMW-Td3. Sequence comparison indicates that sequences of the 3 LMW-GS genes from this study are strongly similar to known LMW-GS genes. Our phylogenetic analysis suggests that LMW-Td1 and LMW-Td2 are homologous with genes on chromosome 1A, and LMW-Td3 is closely related to genes on chromosome 1B.  相似文献   

13.
14.
In this study, we report on the molecular characterization and genomic organization of the low molecular weight glutenin subunit (LMW-GS) gene family in hexaploid wheat (Triticum aestivum L.). Eighty-two positive BAC clones were identified to contain LMW-GS genes from the hexaploid wheat ‘Glenlea’ BAC library via filter hybridization and PCR validation. Twelve unique LMW glutenin genes and seven pseudogenes were isolated from these positive BAC clones by primer-template mismatch PCR and subsequent primer walking using hemi-nested touchdown PCR. These genes were sequenced and each consisted of a single-open reading frame (ORF) and untranslated 5′ and 3′ flanking regions. All 12 LMW glutenin subunits contained eight cysteine residues. The LMW-m-type subunits are the most abundant in hexaploid wheat. Of the 12 LMW-GS, 1, 2 and 9 are i-type, s-type and m-type, respectively. The phylogenetic analysis suggested that the LMW-i type gene showed greater differences to LMW-s and LMW-m-type genes, which, in turn, were more closely related to one another. On the basis of their N-terminal sequences, they were classified into nine groups. Fingerprinting of the 82 BAC clones indicated 30 BAC clones assembled into eight contigs, while the remaining clones were singletons. BAC end sequencing of the 82 clones revealed that long terminal repeat (LTR) retrotransposons were abundant in the Glu-3 regions. The average physical distance between two adjacent LMW-GS genes was estimated to be 81 kb. Most of LMW-GS genes are located in the d-genome, suggesting that the Glu-D3 locus is much larger than the Glu-B3 locus and Glu-A3 locus. Alignments of sequences indicated that the same type (starting with the same N-terminal sequence) LMW-GS genes were highly conserved in the homologous genomes between hexaploid wheat and its donors such as durum wheat and T. tauschii. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
Low-molecular-weight glutenins (LMW-GS) in common wheat (Triticum aestivum L.) are of great importance for processing quality of pan bread and noodles. The objectives of this study are to identify LMW-GS coding genes at GluD3 locus on chromosome 1D and to establish relationships between these genes and GluD3 alleles (a, b, c, d, and e) defined by protein electrophoretic mobility. Specific primer sets were designed to amplify each of the three LMW-GS chromosome 1D gene regions including upstream, coding and downstream regions of eight wheat cultivars containing GluD3 a, b, c, d and e alleles. Three LMW-GS genes, designated as GluD3-1, GluD3-2 and GluD3-3, were amplified from the eight wheat cultivars. The allelic variants of these three genes were analysed at the DNA and protein level. GluD3-1 showed two allelic variants or haplotypes, one common to cultivars containing protein alleles a, d and e (designated GluD3-11) and the other was present in cultivars with alleles b and c (designated GluD3-12). Comparing with GluD3-12, a 3-bp deletion was found in the coding region of the N-terminal repetitive domain of GluD3-11, leading to a glutamine deletion at the 116th position. GluD3-2 had three variants at the DNA level in the eight cultivars, which were designated as GluD3-21, GluD3-22 and GluD3-23. In comparison to GluD3-21, a single nucleotide polymorphism (SNP) was detected for GluD3-22 in the signal peptide region, resulting in an amino acid change from alanine to threonine at the 11th position; and 11 mutations were found at GluD3-23, with five in upstream region, four in coding region and two in downstream region, respectively. GluD3-3 had two haplotypes, designated as GluD3-31 and GluD3-32, both belonging to LMW-s glutenin subunits though their first amino acids in N-terminal region are different. Compared with the GenBank GluD3 genes, nucleotide sequences of GluD3-21 and GluD3-23 were the same as X13306 and AB062875, respectively. GluD3-22 and GluD3-11 had only one-base difference from U86027 and AB062865. GluD3-12 was not found in the GenBank database, indicating a newly identified GluD3 gene variation. GluD3-3 was a new gene different from any other known GluD3 genes. Analyses of the relationship between Glu-D3 alleles defined by protein electrophoretic mobility and different GluD3 gene variations at the DNA or protein level provided molecular basis for DNA based identification of glutenin alleles.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

17.
The C hordein (prolamin storage protein) fraction of barley endosperm has been purified and the N-terminal sequence of amino acids determined for 30 residues. No sequence was obtained for the B hordein fraction because the N-terminus was blocked.  相似文献   

18.
19.
Low-molecular-weight glutenin subunit (LMW-GS) Glu-B3 has a significant influence on the processing quality of the end-use products of common wheat. To characterize the LMW-GS genes at the Glu-B3 locus, gene-specific PCR primers were designed to amplify eight near-isogenic lines and Cheyenne with different Glu-B3 alleles (a, b, c, d, e, f, g, h and i) defined by protein electrophoretic mobility. The complete coding regions of four Glu-B3 genes with complete coding sequence were obtained and designated as GluB3-1, GluB3-2, GluB3-3 and GluB3-4. Ten allele-specific PCR markers designed from the SNPs present in the sequenced variants discriminated the Glu-B3 proteins of electrophoretic mobility alleles a, b, c, d, e, f, g, h and i. These markers were validated on 161 wheat varieties and advanced lines with different Glu-B3 alleles, thus confirming that the markers can be used in marker-assisted breeding for wheat grain processing quality. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. L. H. Wang and X. L. Zhao contributed equally to this study.  相似文献   

20.
Some allelic forms of low-molecular-weight glutenin subunit (LMW-GS) can greatly influence the end-use of wheat flours, understanding the function of each allele of LMW-GS is important to wheat quality breeding. A LMW-GS gene XYGluD3-LMWGS 1(AY263369) has been cloned from bread wheat cultivar Xiaoyan 6. The deduced protein contained nine cystine residues, one more than that in all other LMW-GSs reported previously, indicating that it is either a new gene or a new allele of a known LMW-GS gene. In this study, the gene was expressed in E. coil in large scale for the testing of its functional property. Reactive Red 120-Agarose resin was used efficiently to purify the expressed LMW-GS proteins from bacteria, with the lactic acid–sodium lactate buffer (pH 4.5) which contained low concentration SDS as elution solution. The purified protein (belonging to the LMW-m family, MW about 35 KDa) was supplemented into a base flour, the results of 10 g dough mixing test indicated that incorporation of the LMW-GS increased the strength of the dough, with significant increases in mixing time (MT) and peak width (PW), and decrease in breakdown in resistance (RBD) compared with the control. In addition, the dough with incorporation of the LMW-GS had more glutenin macropolyeric protein than the control, suggesting that the LMW-GS participated in forming larger glutenin polymers, and greatly contributed to dough strength. The changes in mixing parameters and the amount of glutenin macropolyeric protein were related to the quantity of incorporating subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号