首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complementary oligodeoxynucleotides (ODNs) that contain 2-aminoadenine and 2-thiothymine interact weakly with each other but form stable hybrids with unmodified complements. These selectively binding complementary (SBC) agents can invade duplex DNA and hybridize to each strand (Kutyavin, I. V., Rhinehart, R. L., Lukhtanov, E. A., Gorn, V. V., Meyer, R. B., and Gamper, H. B. (1996) Biochemistry 35, 11170-11176). Antisense ODNs with similar properties should be less encumbered by RNA secondary structure. Here we show that SBC ODNs strand invade a hairpin in the mini-exon RNA of Leishmania amazonensis and that the resulting heteroduplexes are substrates for Escherichia coli RNase H. SBC ODNs either with phosphodiester or phosphorothioate backbones form more stable hybrids with RNA than normal base (NB) ODNs. Optimal binding was observed when the entire hairpin sequence was targeted. Translation of L. amazonensis mRNA in a cell-free extract was more efficiently inhibited by SBC ODNs complementary to the mini-exon hairpin than by the corresponding NB ODNs. Nonspecific protein binding in the cell-free extract by phosphorothioate SBC ODNs rendered them ineffective as antisense agents in vitro. SBC phosphorothioate ODNs displayed a modest but significant improvement of leishmanicidal properties compared with NB phosphorothioate ODNs.  相似文献   

2.
Components that form stable hairpin loops are highly useful for the development of functional DNA and RNA molecules. We have designed and synthesized a sugar-modified thymidine analogue, 3'-deoxy-4'-C-(2-hydroxyethyl)thymidine (X), as a nucleosidic loop component stabilizing the hairpin structure. The ODNs I-1-4, 5'-d[CGAACG-X(n)-CGTTCG]-3' (I-1, n = 1; I-2, n = 2; I-3, n = 3; I-4, n = 4), forming the hairpin loop structures, of which the loop moiety consisted of the analogue X, and also the corresponding unmodified ODNs II-1-4, 5'-d[CGAACG-T(n)-CGTTCG]-3' (II-1, n = 1; II-2, n = 2;II-3, n = 3; II-4, n = 4), having a thymidine loop, were synthesized by the phosphoramidite method. The melting temperatures (T(m)) of the ODNs I-1-4 containing X in the loop moiety at 5 microM were 67.1, 68.1, 73.0, and 69.3 degrees C, respectively, and those of the control natural ODNs II-1-4 were 65.3, 67.0, 69.2, and 68.8 degrees C, respectively. Thus, the ODNs I-1-4 formed a more thermally stable hairpin than the corresponding unmodified ODNs II-1-4 having an equal number of loop residues. The hairpin structures of the modified ODNs I-1-4 and the unmodified ODNs II-1-4 were investigated by CD spectroscopy and molecular mechanics calculations. These results showed that the 4'-branched nucleoside X can stabilize hairpin structures when it is present in the loop moiety, probably due to the flexibility of the one-carbon-elongated 4'-branched structure.  相似文献   

3.
寡聚脱氧核苷酸的结构与抗降解特性的研究   总被引:1,自引:0,他引:1  
合成了4段具有不同高级结构或不同修饰的寡聚脱氧核苷酸,检查它们在20%血清中的稳定性.发现:(1)寡核苷酸主要被血清中的3′外切核酸酶降解,未经修饰的线性寡核苷酸降解严重;(2)末端部分硫代修饰的寡核苷酸稳定性明显提高;(3)自身互补形成的配对结构可有效保护3′末端.具有4个以上(含4个)GC对的3′端发夹结构寡核苷酸,其抗核酸酶的能力几乎与硫代修饰的寡核苷酸相当.  相似文献   

4.
The role of Syk kinase in Fc gamma receptor (Fc gamma R) IIA-mediated phagocytosis was examined with two forms of antisense oligodeoxynucleotides (ODNs) designed to hybridize to human Syk mRNA. Monocytes were incubated with linear and stem-loop antisense ODNs targeted to Syk mRNA. When complexed with cationic liposomes, stem-loop Syk antisense ODN with phosphorothioate modification exhibited stability in fetal bovine and human serum. The stem-loop Syk antisense ODN at a concentration of 0.2 microM inhibited Fc gamma RIIA-mediated phagocytosis by 90% and completely eliminated Syk mRNA and protein in monocytes, whereas scrambled-control ODNs had no effect. The Syk antisense ODNs did not change beta-actin mRNA levels and Fc gamma RII cell-surface expression. In addition, stem-loop Syk antisense ODN inhibited Fc gamma RI and Fc gamma RIIIA-mediated phagocytosis. These data indicate the efficacy of stem-loop Syk antisense ODN for targeting and degrading Syk mRNA and protein and the importance of Syk kinase in Fc gamma receptor-mediated phagocytosis. Immunoblotting assay demonstrated that Fc gamma RII tyrosine phosphorylation after Fc gamma RII cross-linking did not change in the absence of Syk protein. These results indicate that Syk kinase is required for Fc gamma RIIA-mediated phagocytic signaling and that Fc gamma RII cross-linking leads to tyrosine phosphorylation of Fc gamma RII independent of Syk kinase.  相似文献   

5.
Abstract

We have designed a new type of oligodeoxyribonucleotide. These oligodeoxyribonucleotides form two hairpin loop structures with base pairs (sense and antisense) in the double helical stem at the 3′ and 5′-ends (nicked dumbbell oligonucleotides). The nicked dumbbell oligonucleotides are molecules with free ends that are more resistant to exonuclease attack. Furthermore, the nicked dumbbell oligonucleotide containing phosphorothioate (P=S) bonds in the hairpin loops has increased nuclease resistance, as compared to the unmodified nicked oligonucleotide. The binding of the nicked dumbbell oligonucleotide to RNA is lower than that of a single-stranded DNA. We also describe the anti-HIV activity of nicked dumbbell oligonucleotides.

  相似文献   

6.
Minimally modified oligonucleotides belong to the second-generation antisense class. They are phosphodiester oligonucleotides with a minimum of phosphorothioate linkages in order to be protected against serum and cellular exonucleases and endonucleases. They activate RNase H, have weak interactions with proteins, and have thus a better antisense efficiency. Two of them have been designed from an all-phosphorothioate antisense oligonucleotide directed against mdrl-expressing cells. They are protected against serum and cellular enzymatic degradation by the self-forming hairpin d(GCGAAGC) at their 3'-end and by judiciously located phosphorothioate residues, depending on the cellular composition in exonucleases or endonucleases. Besides their already demonstrated ability to cleave pyrimidine sites, endonucleases show some specificity for CpG sites. Their activity is hindered if specific sites are involved in secondary structure as hairpin.  相似文献   

7.
Successful application of antisense oligonucleotides (ODNs) in cell biology and therapy will depend on the ease of design, efficiency of (intra)cellular delivery, ODN stability, and target specificity. Equally essential is a detailed understanding of the mechanism of antisense action. To address these issues, we employed phosphorothioate ODNs directed against specific regions of the mRNA of the serotonin 5HT1A receptor, governed by sequence and structure. We demonstrate that rather than various intracellular factors, the gene sequence per se primarily determines the antisense effect, since 5HT1a autoreceptors expressed in RN46A cells, postsynaptic receptors expressed in SN48 cells, and receptors overexpressed in LLP-K1 cells are all efficiently downregulated following ODN delivery via a cationic lipid delivery system. The data also reveal that the delivery system as such is a relevant parameter in ODN delivery. Antisense ODNs bound extensively to the RNA matrix in the cell nuclei, thereby interacting with target mRNA and causing its subsequent degradation. Antisense delivery effectively diminished the mRNA pool, thus resulting in downregulation of newly synthesized 5HT1A proteins, without the appearance of truncated protein fragments. In conjunction with the selected mRNA target sequences of the ODNs, the latter data indicated that effective degradation rather than a steric blockage of the mRNA impedes protein expression. The specificity of the antisense approach, as described in this study, is reflected by the effective functional downregulation of the 5-HT1A receptor.  相似文献   

8.
In order to develop novel antigene molecules forming thermally stable triplexes with target DNAs and having nuclease resistance properties, we synthesized oligodeoxynucleotides (ODNs) with various lengths of aminoalkyl-linkers at the 4'alpha position of thymidine and the aminoethyl-linker at the 4'alpha position of 2'-deoxy-5-methylcytidine. Thermal stability of triplexes between these ODNs and a DNA duplex was studied by thermal denaturation. The ODNs containing the nucleoside 2 with the aminoethyl-linker or the nucleoside 3 with the aminopropyl-linker thermally stabilized the triplexes, whereas the ODNs containing the nucleoside 1 with the aminomethyl-linker or the nucleoside 4 with the 2-[N-(2-aminoethyl)carbamoyl]oxy]ethyl-linker thermally destabilized the triplexes. The ODNs containing 2 were the most efficient at stabilizing the triplexes with the target DNA. The ODNs containing 4'alpha-C-(2-aminoethyl)-2'-deoxy-5-methylcytidine (5) also efficiently stabilized the triplexes with the target DNA. Stability of the ODN containing 5 to nucleolytic hydrolysis by snake venom phosphodiesterase (a 3'-exonuclease) was studied. It was found that the ODN containing 5 was more resistant to nucleolytic digestion by the enzyme than an unmodified ODN. In a previous paper, we reported that the ODNs containing 2 were more resistant to nucleolytic digestion by DNase I (an endonuclease) than the unmodified ODNs. Thus, it was found that the ODNs containing 4'alpha-C-(2-aminoethyl)-2'-deoxynucleosides were good candidates for antigene molecules.  相似文献   

9.
Antisense oligodeoxynucleotides (ODNs) are being explored as therapeutic agents for the treatment of many disorders including viral infections, cancers, and inflammatory disorders. In addition, antisense technology can be of great benefit to those attempting to assign function to the multitude of new genes being uncovered in the genomics initiative. However, the demonstration that the gene-regulating effects produced by antisense-designed ODNs are attributable to an antisense mechanism of action requires carefully designed experimentation. Critical to the assignment of an antisense mechanism of action is the availability of nuclease-stable ODNs, inside cells, that have a high binding affinity with the target mRNA and modulate gene functions in a sequence-dependent manner. To help us achieve a goal of sequence-specific antisense activity we designed antisense ODNs containing C(5)-propyne-modified 2'-deoxyuracil and N(7)-propyne-modified 7-deaza-2'-deoxyguanosine bases and partially modified (phosphorothioate) internucleoside linkages. These modified ODNs were found to have enhanced binding affinity to their target mRNA sequences as well as reduced sequence-independent side effects. We used these ODNs to specifically inhibit p55 tumor necrosis factor receptor type 1 expression and tumor necrosis factor alpha-mediated functions in culture assays.  相似文献   

10.
To construct the nuclease-resistant oligodeoxynucleotides (ODNs) with natural phosphodiester linkages, we synthesized ODNs that contain 6'alpha-[N-(aminoalkyl)carbamoyloxy]-carbocyclic-thymidines (4, 5, and 6). The stability of these ODNs to nuclease hydrolysis was examined by using snake venom phosphodiesterase (3'-exonuclease) and nuclease S1 (endonuclease). It was found that the ODNs containing 4, 5, or 6 were more resistant to both the enzymes than the unmodified ODN. These nuclease-resistant properties are noteworthy, since they have natural phosphodiester linkages. Next, the thermal stabilities of duplexes consisting of these ODNs and either the complementary DNA or RNA were studied by thermal denaturation. The ODNs that contain 4 were found to enhance the thermal stability of the duplexes with the complementary DNA, while those containing 5 or 6 decreased the thermal stability of the ODN-DNA duplexes. On the other hand, all ODNs that contained 4, 5, or 6 decreased the thermal stability of the ODN-RNA duplexes.  相似文献   

11.
We have studied factors which may effect the intracellular availability of oligonucleotides to achieve antisense activity. 15-20 mer unmodified, phosphorothioate modified and liposomally encapsulated oligodeoxynucleotides have been tested in leukemia MOLT-3 cells. Phosphorothioate analogs penetrated and accumulated intact in cells in contrast to unmodified oligomers, which showed a high instability in cell culture medium. A slow decrease of intracellular concentration of undegraded phosphorothioate oligodeoxynucleotides was observed after cell treatment and could be predominantly explained by a significant efflux transport. Using laser-assisted confocal microscopy we have observed that fluorescein 5-end-labeled phosphorothioate derivatives predominantly distributed in intracytoplasmic endocytic vesicles following cell treatment. The end-capped version of phosphorothioate oligodeoxynucleotides exhibited greater cellular uptake than fully modified analogues while exhibiting similar biological stability. Liposome encapsulation made possible oligomer protection in serum-containing medium and substantially improved cellular accumulation. Furthermore, the efflux rate of oligomer initially introduced within liposomes is 2-fold lower than that observed in cells which have been incubated with free oligonucleotides. Liposomal preparations of oligodeoxynucleotides facilitate release from endocytic vesicles, and thus, cytoplasmic and nuclear localization are observed following cell treatment. Furthermore, intracellular distribution studies demonstrate that intracellular transport of unmodified oligomers is effectively achieved using the liposomal carrier.  相似文献   

12.
Locked nucleic acid (LNA) is an RNA derivative that when introduced into oligodeoxynucleotides (ODN), mediates high efficacy and stability. CpG ODNs are potent immune stimulators and are recognized by toll-like receptor-9 (TLR9). Some phosphorothioate antisense ODNs bearing CpG dinucleotides have been shown to possess immune modulatory capacities. We investigated the effects of LNA substitutions on immune stimulation mediated by antisense ODN G3139 or CpG ODN 2006. LNA ODNs were tested for their ability to stimulate cytokine secretion from human immune cells or TLR9-dependent signaling. Phosphorothioate chimeric LNA/DNA antisense ODNs with phosphodiester-linked LNA nucleobases at both ends showed a marked decrease of immune modulation with an increasing number of 3' and 5' LNA bases. In addition, guanosine-LNA and cytosine-LNA or simply cytosine-LNA substitutions in the CpG dinucleotides of ODN 2006 led to strong decrease or near complete loss of immune modulation. TLR9-mediated signaling was similarly affected. These data indicate that increasing amounts of LNA residues in the flanks or substitutions of CpG nucleobases with LNA reduce or eliminate the immune stimulatory effects of CpG-containing phosphorothioate ODN.  相似文献   

13.
The in vitro stability and metabolism of GEM[91, a 25mer phosphorothioate antisense oligonucleotide complementary to the gag mRNA region of HIV-1, was investigated using capillary electrophoresis (CE). The in vitro degradation of the parent compound at 37 degrees C was followed over the course of 120 h in human plasma. A CE method using laser-induced fluorescence detection was able to detect 5'-end intact metabolites including the parent compound extracted from biological fluids. Because the primary metabolic pathway is believed to be via 3'-exonuclease activity, the results of this study were compared with the stability of the compound in a solution containing 3'-exonuclease. The numerical solution of sequential first-order reactions was used to obtain kinetic parameters. Exonuclease digestion of the parent compound, as measured using an automated CE-UV instrument, yielded striking similarities between the two in vitro systems as well as between in vitro and in vivo systems.  相似文献   

14.
Multidrug resistance-associated protein (MRP1) causes cellular drug resistance in several cancer cell lines. In this paper we show that antisense oligonucleotides decrease MRP1 expression in human leukaemia cells. We investigated biological activity of a series of 12 linear phosphorothioate oligonucleotides, complementary to several regions of MRP1 mRNA. The oligonucleotides were administered to leukaemia HL60/ADR cells overexpressing MRP1 protein. Then, the level of MRP1 mRNA was determined by means of semiquantitative RT-PCR and the protein level by reaction with specific monoclonal antibodies. Some of the investigated antisense oligonucleotides decrease the expression level of the MRP1 protein by 46% and its mRNA level by 76%.  相似文献   

15.
BACKGROUND: Severe acute respiratory syndrome (SARS) is caused by a novel coronavirus (SARS-CoV). It is an enveloped, single-stranded, plus-sense RNA virus with a genome of approximately 30 kb. The structural proteins E, M and N of SARS-CoV play important roles during host cell entry and viral morphogenesis and release. Therefore, we have studied whether expression of these structural proteins can be down-regulated using an antisense technique. METHODS: Vero E6 cells were transfected with plasmid constructs containing exons of the SARS-CoV structural protein E, M or N genes or their exons in frame with the reporter protein EGFP. The transfected cell cultures were treated with antisense phosphorothioated oligonucleotides (antisense PS-ODN, 20mer) or a control oligonucleotide by addition to the culture medium. RESULTS: Among a total of 26 antisense PS-ODNs targeting E, M and N genes, we obtained six antisense PS-ODNs which could sequence-specifically reduce target genes expression by over 90% at the concentration of 50 microM in the cell culture medium tested by RT-PCR. The antisense effect was further proved by down-regulating the expression of the fusion proteins containing the structural proteins E, M or N in frame with the reporter protein EGFP. In Vero E6 cells, the antisense effect was dependent on the concentrations of the antisense PS-ODNs in a range of 0-10 microM or 0-30 microM. CONCLUSIONS: The antisense PS-ODNs are effective in downregulation of SARS. The findings indicate that antisense knockdown of SARS could be a useful strategy for treatment of SARS, and could also be suitable for studies of the pathological function of SARS genes in a cellular model system.  相似文献   

16.
The synthesis, hybridization properties and antisense activities of oligodeoxynucleotides (ODNs) containing 7-(1-propynyl)-7-deaza-2'-deoxyguanosine (pdG) and 7-(1-propynyl)-7-deaza-2'-deoxyadenosine (pdA) are described. The suitably protected nucleosides were synthesized and incorporated into ODNs. Thermal denaturation (Tm) of these ODNs hybridized to RNA demonstrates an increased stability relative to 7-unsubstituted deazapurine and unmodified ODN controls. Antisense inhibition by these ODNs was determined in a controlled microinjection assay and the results demonstrate that an ODN containing pdG is approximately 6 times more active than the unmodified ODN. 7-Propyne-7-deaza-2'-deoxyguanosine is a promising lead analog for the development of antisense ODNs with increased potency.  相似文献   

17.
Methylphosphonate-modified oligo-2'-O-methylribonucleotides 15-20 nucleotides (nt) in length were prepared whose sequences are complementary to the 5' and 3' sides of the upper hairpin of HIV trans-acting response element (TAR) RNA. These anti-TAR oligonucleotides (ODNs) form stable hairpins whose melting temperatures (Tm) range from 55 degrees C to 80 degrees C. Despite their rather high thermal stabilities, the hairpin oligo-2'-O-methylribonucleotides formed very stable complexes with TAR RNA, with dissociation constants in the nanomolar concentration range at 37 degrees C. The affinities of the hairpin oligomers for TAR RNA were influenced by the positions of the methylphosphonate linkages. The binding affinity was reduced approximately 17-fold by the presence of two methylphosphonate linkages in the TAR loop complementary region (TLCR) of the oligomer, whereas methylphosphonate linkages outside this region increased binding affinity approximately 3-fold. The configurations of the methylphosphonate linkages in the TLCR also affected binding affinity, with the RpRp isomer showing significantly higher binding than the SpSp isomer. In addition to serving as probes of the interactions between the oligomer and TAR RNA, the presence of the methylphosphonate linkages in combination with the hairpin structure increases the resistance of these oligomers to degradation by exonucleases found in mammalian serum. The combination of high binding affinity and nuclease resistance of the hairpin ODNs containing methylphosphonate linkages suggests their potential utility as antisense compounds.  相似文献   

18.
Oligonucleotide-based therapies have considerable potential in cancer, viral, and cardiovascular disease therapies. However, it is becoming clear that the biological effects of oligonucleotides are not solely due to the intended sequence-specific interactions with nucleic acids. Oligonucleotides are also capable of interacting with numerous cellular proteins owing to their polyanionic character or specific secondary structure. We have examined the antiproliferative activity, protein binding, and G-quartet formation of a series of guanosine-rich oligonucleotides, which are analogues of GRO29A, a G-quartet forming, growth-inhibitory oligonucleotide, whose effects we have previously described [Bates P. J., Kahlon, J. B., Thomas, S. D., Trent, J. O., and Miller, D. M. (1999) J. Biol. Chem. 274, 26369-26377]. The GRO29A analogues include phosphorothioate (PS29A), 2'-O-methyl RNA (MR29A), and mixed DNA/2'-O-methyl RNA (MRdG29A) oligonucleotides. We demonstrate by UV spectroscopy that all of the modified analogues form stable structures, which are consistent with G-quartet formation. We find that the phosphorothioate and mixed DNA/2'-O-methyl analogues are able to significantly inhibit proliferation in a number of tumor cell lines, while the 2'-O-methyl RNA has no significant effects. Similar to the original oligonucleotide, GRO29A, the growth inhibitory oligonucleotides were able to compete with the human telomere sequence oligonucleotide for binding to a specific cellular protein. The less active MR29A does not compete significantly for this protein. On the basis of molecular modeling of the oligonucleotide structures, it is likely that the inactivity of MR29A is due to the differences in the groove structure of the quadruplex formed by this oligonucleotide. Interestingly, all GRO29A analogues, including an unmodified DNA phosphodiester oligonucleotide, are remarkably resistant to nuclease degradation in the presence of serum-containing medium, indicating that secondary structure plays an important role in biological stability. The remarkable stability and strong antiproliferative activity of these oligonucleotides confirm their potential as therapeutic agents.  相似文献   

19.
Selective inhibition of gene expression by antisense oligodeoxynucleotides (ODNs) is widely applied in gene function analyses; however, experiments with ODNs in plants are scarce. In this work, we extend the use of ODNs in different plant species, optimizing the uptake, stability, and efficiency of ODNs with a combination of molecular biological and biophysical techniques to transiently inhibit the gene expression of different chloroplast proteins. We targeted the nucleus-encoded phytoene desaturase (pds) gene, encoding a key enzyme in carotenoid biosynthesis, the chlorophyll a/b-binding (cab) protein genes, and the chloroplast-encoded psbA gene, encoding the D1 protein. For pds and psbA, the in vivo stability of ODNs was increased by phosphorothioate modifications. After infiltration of ODNs into juvenile tobacco (Nicotiana benthamiana) leaves, we detected a 25% to 35% reduction in mRNA level and an approximately 5% decrease in both carotenoid content and the variable fluorescence of photosystem II. In detached etiolated wheat (Triticum aestivum) leaves, after 8 h of greening, the mRNA level, carotenoid content, and variable fluorescence were inhibited up to 75%, 25%, and 20%, respectively. Regarding cab, ODN treatments of etiolated wheat leaves resulted in an up to 59% decrease in the amount of chlorophyll b, a 41% decrease of the maximum chlorophyll fluorescence intensity, the cab mRNA level was reduced to 66%, and the protein level was suppressed up to 85% compared with the control. The psbA mRNA and protein levels in Arabidopsis (Arabidopsis thaliana) leaves were inhibited by up to 85% and 72%, respectively. To exploit the potential of ODNs for photosynthetic genes, we propose molecular design combined with fast, noninvasive techniques to test their functional effects.  相似文献   

20.
The modifications of oligodeoxyribonucleotides include replacement of the other chain either all-PS (S-ODNs), or end-capped with several PS (SO-ODNs) groups at both 3'- and 5'-ends. A general synthesis of phosphorothioate analogues of oligodeoxyribonucleotides is described using the new phosphite. In assays of HIV, oligomers (S-ODNs) with complete replacement of phosphodiesters with phosphorothioate groups were found to be very active. Finally of particular interest is S-ODNs-rev or tat (20mers) which possessed slightly higher anti-HIV activity than S-dC28 itself. By contrast, the unmodified oligomers (ODNs) as well as SO-ODNs did not have any inhibitory effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号