首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Hummel T  Zipursky SL 《Neuron》2004,42(1):77-88
Drosophila olfactory receptor neurons (ORNs) elaborate a precise internal representation of the external olfactory world in the antennal lobe (AL), a structure analagous to the vertebrate olfactory bulb. ORNs expressing the same odorant receptor innervate common targets in a highly organized neuropilar structure inside the AL, the glomerulus. During normal development, ORNs target to specific regions of the AL and segregate into subclass-specific aggregates called protoglomeruli prior to extensive intermingling with target dendrites to form mature glomeruli. Using a panel of ORN subclass-specific markers, we demonstrate that in the adult AL, N-cadherin (N-cad) mutant ORN terminals remain segregated from dendrites of target neurons. N-cad plays a crucial role in protoglomerulus formation but is largely dispensible for targeting to the appropriate region of the AL. We propose that N-cad, a homophilic cell adhesion molecule, acts in a permissive fashion to promote subclass-specific sorting of ORN axon terminals into protoglomeruli.  相似文献   

2.
In both insects and mammals, olfactory receptor neurons (ORNs) expressing specific olfactory receptors converge their axons onto specific glomeruli, creating a spatial map in the brain. We have previously shown that second order projection neurons (PNs) in Drosophila are prespecified by lineage and birth order to send their dendrites to one of approximately 50 glomeruli in the antennal lobe. How can a given class of ORN axons match up with a given class of PN dendrites? Here, we examine the cellular and developmental events that lead to this wiring specificity. We find that, before ORN axon arrival, PN dendrites have already created a prototypic map that resembles the adult glomerular map, by virtue of their selective dendritic localization. Positional cues that create this prototypic dendritic map do not appear to be either from the residual larval olfactory system or from glial processes within the antennal lobe. We propose instead that this prototypic map might originate from both patterning information external to the developing antennal lobe and interactions among PN dendrites.  相似文献   

3.
4.
Glomeruli, neuropilar structures composed of olfactory receptor neuron (ORN) axon terminals and central neuron dendrites, are a common feature of olfactory systems. Typically, ORN axons segregate into glomeruli based on odor specificity, making glomeruli the basic unit for initial processing of odorant information. Developmentally, glomeruli arise from protoglomeruli, loose clusters of ORN axons that gradually synapse onto dendrites. Previous work in the moth Manduca sexta demonstrated that protoglomeruli develop in a wave across the antennal lobe (AL) during stage 5 of the 18 stages of metamorphic adult development. However, ORN axons from the distal segments of the antenna arrive at the AL for several more days. We report that protoglomeruli present at stage 5 account for only approximately two or three of adult glomeruli with the number of structures increasing over subsequent stages. How do these later arriving axons incorporate into glomeruli? Examining the dendritic projections of a unique serotonin-containing neuron into glomeruli at later stages revealed glomeruli with immature dendritic arbors intermingled among more mature glomeruli. Labeling ORN axons that originate in proximal segments of the antenna suggested that early-arriving axons target a limited number of glomeruli. We conclude that AL glomeruli form over an extended time period, possibly as a result of ORNs expressing new odorant receptors arriving from distal antennal segments.  相似文献   

5.
Different classes of olfactory receptor neurons (ORNs) in Drosophila innervate distinct targets, or glomeruli, in the antennal lobe of the brain. Here we demonstrate that specific ORN classes require the cell surface protein Dscam (Down Syndrome Cell Adhesion Molecule) to synapse in the correct glomeruli. Dscam mutant ORNs frequently terminated in ectopic sites both within and outside the antennal lobe. The morphology of Dscam mutant axon terminals in either ectopic or cognate targets was abnormal. Target specificity for other ORNs was not altered in Dscam mutants, suggesting that different ORNs use different strategies to regulate wiring. Multiple forms of Dscam RNA were detected in the developing antenna, and Dscam protein was localized to developing ORN axons. We propose a role for Dscam protein diversity in regulating ORN target specificity.  相似文献   

6.
In the olfactory system of Drosophila, 50 functional classes of sensory receptor neurons (ORNs) project in a highly organized fashion into the CNS, where they sort out from one another and converge into distinct synaptic glomeruli. We identified the transmembrane molecule Semaphorin-1a (Sema-1a) as an essential component to ensure glomerulus-specific axon segregation. Removal of sema-1a in ORNs does not affect the pathfinding toward their target area but disrupts local axonal convergence into a single glomerulus, resulting in two distinct targeting phenotypes: axons either intermingle with adjacent ORN classes or segregate according to their odorant receptor identity into ectopic sites. Differential Sema-1a expression can be detected among neighboring glomeruli, and mosaic analyses show that sema-1a functions nonautonomously in ORN axon sorting. These findings provide insights into the mechanism by which afferent interactions lead to synaptic specificity in the olfactory system.  相似文献   

7.
In addition to (i) mossy terminals, (ii) Golgi axons, (iii) granule cell dendrites and (iv), occasionally, Golgi cell dendrites, a third axonal profile identified by morphological criteria as the collateral of Purkinje axons, has been found in 2% of all cerebellar glomeruli. These infrequent components of a few glomeruli, however, were never seen in normal cerebellar cortex to establish specialized synaptic contact with glomerular dendrites. Two to four weeks after surgical isolation of the cerebellar cortex, i.e. following the destruction of both efferent and afferent fibres, the number of glomeruli containing (hypertrophic) axonal branches of Purkinje cells has increased to 13% of all surveyed glomeruli. In addition, the Purkinje axon terminals in the mossy fibre-deprived glomeruli were observed to establish numerous Gray II-type synaptic contacts with surrounding granule cell dendrites. It is suggested that the development of heterologous synapses between hypertrophic, or even intact, Purkinje axon collaterals on the one hand and the mossy fibre-vacated granule cell dendrites on the other, is a compensatory, reactive process to the synaptic "desaturation" of granule neurons, which demonstrate a dormant potential of Purkinje cells to form new synaptic contacts in the adult cerebellum.  相似文献   

8.
Neurotransmitters have been implicated in regulating growth cone motility and guidance in the developing nervous system. Anatomical and electrophysiological studies show the presence of functional GABAB receptors on adult olfactory receptor neuron (ORN) nerve terminals. Using antisera against the GABAB R1a/b receptor isoforms we show that developing mouse olfactory receptor neurons express GABAB receptors from embryonic day 14 through to adulthood. GABAB receptors are present on axon growth cones from both dissociated ORNs and olfactory epithelial explants. Neurons in the olfactory bulb begin to express glutamic acid decarboxylase (GAD), the synthetic enzyme for GABA, from E16 through to adulthood. When dissociated ORNs were cultured in the presence of the GABAB receptor agonists, baclofen or SKF97541, neurite outgrowth was significantly reduced. Concurrent treatment of the neurons with baclofen and the GABAB receptor antagonist CGP54626 prevented the inhibitory effects of baclofen on ORN neurite outgrowth. These results show that growing ORN axons express GABAB receptors and are sensitive to the effects of GABAB receptor activation. Thus, ORNs in vivo may detect GABA release from juxtaglomerular cells as they enter the glomerular layer and use this as a signal to limit their outgrowth and find synaptic targets in regeneration and development.  相似文献   

9.
Development of the adult olfactory system of the moth Manduca sexta depends on reciprocal interactions between olfactory receptor neuron (ORN) axons growing in from the periphery and centrally-derived glial cells. Early-arriving ORN axons induce a subset of glial cells to proliferate and migrate to form an axon-sorting zone, in which later-arriving ORN axons will change their axonal neighbors and change their direction of outgrowth in order to travel with like axons to their target areas in the olfactory (antennal) lobe. These newly fasciculated axon bundles will terminate in protoglomeruli, the formation of which induces other glial cells to migrate to surround them. Glial cells do not migrate unless ORN axons are present, axons fail to fasciculate and target correctly without sufficient glial cells, and protoglomeruli are not maintained without a glial surround. We have shown previously that Epidermal Growth Factor receptors and the IgCAMs Neuroglian and Fasciclin II play a role in the ORN responses to glial cells. In the present work, we present evidence for the importance of glial Fibroblast Growth Factor receptors in glial migration, proliferation, and survival in this developing pathway. We also report changes in growth patterns of ORN axons and of the dendrites of olfactory (antennal lobe) neurons following blockade of glial FGFR activation that suggest that glial FGFR activation is important in reciprocal communication between neurons and glial cells.  相似文献   

10.
We used cytochrome oxidase (CytOx) staining intensity, which is correlated with neuronal functional activity, to evaluate maturity and functionality of newborn rat olfactory epithelium (OE) and olfactory receptor neurons (ORNs). Nasal olfactory tissue of neonatal rats was stained with CytOx and analyzed qualitatively and quantitatively. Results revealed that newborn OE shows six differentially stained horizontal bands. Bands run parallel to the OE surface and were categorized as very light, medium or darkly stained. A narrow and pale Band 1 overlapped with horizontal basal cells. Next, a wide and lightly stained Band 2 was observed that coincides with the globose basal cell layer and immature ORNs, deep in OE. Next apically, a medium-staining Band 3 overlapped with ORN perikarya. Closer to the surface, a medium to light Band 4 was discerned where dendrites of mature ORNs normally occur. This band was interrupted with lighter areas due to the presence of supporting cells nuclei. Next, a superficial but dark Band 5 occurred, populated by the apical portions of ORN dendrites and their ciliated knobs and by supporting cell apices; mitochondria in apices of supporting cells contribute predominantly to dense staining of this Band 5. Apical to Band 5, a thin and fairly light Band 6 was observed which overlaps with the mucus layer that contains part of the ORN knobs, their cilia and supporting cell microvilli. Along the length of ORN dendrites, apical segments just below the ORN knobs, and wide basal segments showed a darker staining than the middle segments implying “microzones” of higher neural activity within the most apical and basal regions of dendrites. Our findings agree with ultrastructural studies showing a presence of mitochondria in knobs, basal portions of ORN dendrites and in OE supporting cell apices, suggesting that apical regions of both olfactory and supporting cells near the surfaces are metabolically most active, in odorant detection, signal processing, and detoxification, the latter for supporting cells.  相似文献   

11.
Komiyama T  Sweeney LB  Schuldiner O  Garcia KC  Luo L 《Cell》2007,128(2):399-410
Gradients of axon guidance molecules instruct the formation of continuous neural maps, such as the retinotopic map in the vertebrate visual system. Here we show that molecular gradients can also instruct the formation of a discrete neural map. In the fly olfactory system, axons of 50 classes of olfactory receptor neurons (ORNs) and dendrites of 50 classes of projection neurons (PNs) form one-to-one connections at discrete units called glomeruli. We provide expression, loss- and gain-of-function data to demonstrate that the levels of transmembrane Semaphorin-1a (Sema-1a), acting cell-autonomously as a receptor or part of a receptor complex, direct the dendritic targeting of PNs along the dorsolateral to ventromedial axis of the antennal lobe. Sema-1a also regulates PN axon targeting in higher olfactory centers. Thus, graded expression of Sema-1a contributes to connection specificity from ORNs to PNs and then to higher brain centers, ensuring proper representation of olfactory information in the brain.  相似文献   

12.
During assembly of the Drosophila olfactory circuit, projection neuron (PN) dendrites prepattern the developing antennal lobe before the arrival of axons from their presynaptic partners, the adult olfactory receptor neurons (ORNs). We previously found that levels of transmembrane Semaphorin-1a, which acts as a receptor, instruct PN dendrite targeting along the dorsolateral-ventromedial axis. Here we show that two secreted semaphorins, Sema-2a and Sema-2b, provide spatial cues for PN dendrite targeting. Sema-2a and Sema-2b proteins are distributed in gradients opposing the Sema-1a protein gradient, and Sema-1a binds to Sema-2a-expressing cells. In Sema-2a and Sema-2b double mutants, PN dendrites that normally target dorsolaterally in the antennal lobe mistarget ventromedially, phenocopying cell-autonomous Sema-1a removal from these PNs. Cell ablation, cell-specific knockdown, and rescue experiments indicate that secreted semaphorins from degenerating larval ORN axons direct dendrite targeting. Thus, a degenerating brain structure instructs the wiring of a developing circuit through the repulsive action of secreted semaphorins.  相似文献   

13.
Axon-axon interactions have been implicated in neural circuit assembly, but the underlying mechanisms are poorly understood. Here, we show that in the Drosophila antennal lobe, early-arriving axons of olfactory receptor neurons (ORNs) from the antenna are required for the proper targeting of late-arriving ORN axons from the maxillary palp (MP). Semaphorin-1a is required for targeting of all MP but only half of the antennal ORN classes examined. Sema-1a acts nonautonomously to control ORN axon-axon interactions, in contrast to its cell-autonomous function in olfactory projection neurons. Phenotypic and genetic interaction analyses implicate PlexinA as the Sema-1a receptor in ORN targeting. Sema-1a on antennal ORN axons is required for correct targeting of MP axons within the antennal lobe, while interactions amongst MP axons facilitate their entry into the antennal lobe. We propose that Sema-1a/PlexinA-mediated repulsion provides a mechanism by which early-arriving ORN axons constrain the target choices of late-arriving axons.  相似文献   

14.
BACKGROUND: Drosophila larvae possess only 21 odorant-receptor neurons (ORNs), whereas adults have 1,300. Does this suggest that the larval olfactory system is built according to a different design than its adult counterpart, or is it just a miniature version thereof? RESULTS: By genetically labeling single neurons with FLP-out and MARCM techniques, we analyze the connectivity of the larval olfactory circuit. We show that each of the 21 ORNs is unique and projects to one of 21 morphologically identifiable antennal-lobe glomeruli. Each glomerulus seems to be innervated by a single projection neuron. Each projection neuron sends its axon to one or two of about 28 glomeruli in the mushroom-body calyx. We have discovered at least seven types of projection neurons that stereotypically link an identified antennal-lobe glomerulus with an identified calycal glomerulus and thus create an olfactory map in a higher brain center. CONCLUSIONS: The basic design of the larval olfactory system is similar to the adult one. However, ORNs and projection neurons lack cellular redundancy and do not exhibit any convergent or divergent connectivity; 21 ORNs confront essentially similar numbers of antennal-lobe glomeruli, projection neurons, and calycal glomeruli. Hence, we propose the Drosophila larva as an "elementary" olfactory model system.  相似文献   

15.
Although considerable progress has been made in understanding the roles of olfactory receptor neurons (ORNs) and projection neurons (PNs) in Drosophila antennal lobe (AL) development, the roles of glia have remained largely mysterious. Here, we show that during Drosophila metamorphosis, a population of midline glial cells in the brain undergoes extensive cellular remodeling and is closely associated with the collateral branches of ORN axons. These glial cells are required for ORN axons to project across the midline and establish the contralateral wiring in the ALs. We find that Neuroglian (Nrg), the Drosophila homolog of the vertebrate cell adhesion molecule, L1, is expressed and functions in the midline glial cells to regulate their proper development. Loss of Nrg causes the disruption in glial morphology and the agenesis of the antennal commissural tract. Our genetic analysis further demonstrates that the functions of Nrg in the midline glia require its ankyrin-binding motif. We propose that Nrg is an important regulator of glial morphogenesis and axon guidance in AL development.  相似文献   

16.
Wang  B.  Gonzalo-Ruiz  A.  Sanz  J.M.  Campbell  G.  Lieberman  A.R. 《Brain Cell Biology》2002,30(5):427-441
The ultrastructural characteristics, distribution and synaptic relationships of identified, glutamate-enriched thalamocortical axon terminals and cell bodies in the retrosplenial granular cortex of adult rats is described and compared with GABA-containing terminals and cell bodies, using postembedding immunogold immunohistochemistry and transmission electron microscopy in animals with injections of cholera toxin- horseradish peroxidase (CT-HRP) into the anterior thalamic nuclei. Anterogradely labelled terminals, identified by semi-crystalline deposits of HRP reaction product, were approximately 1 μm in diameter, contained round, clear synaptic vesicles, and established asymmetric (Gray type I) synaptic contacts with dendritic spines and small dendrites, some containing HRP reaction product, identifying them as dendrites of corticothalamic projection neurons. The highest densities of immunogold particles following glutamate immunostaining were found over such axon terminals and over similar axon terminals devoid of HRP reaction product. In serial sections immunoreacted for GABA, these axon terminals were unlabelled, whereas other axon terminals, establishing symmetric (Gray type II) synapses were heavily labelled. Cell bodies of putative pyramidal neurons, containing retrograde HRP label, were numerous in layers V–VI; some were also present in layers I–III. Most were overlain by high densities of gold particles in glutamate but not in GABA immunoreacted sections. These findings provide evidence that the terminals of projection neurons make synaptic contact with dendrites and dendritic spines in the ipsilateral retrosplenial granular cortex and that their targets include the dendrites of presumptive glutamatergic corticothalamic projection neurons.  相似文献   

17.
The antennal lobe of the moth contains several classes of glial cells that are likely to play functional roles in both the developing and mature lobe. In this study, confocal and electron microscopy were used to examine in detail the morphology of two classes of glial cells, those associated with olfactory receptor axons as they course to their targets in the lobe and those that form borders around the synaptic neuropil of the olfactory glomeruli. The former, the nerve-layer glia, have long processes with multiple expansions that enwrap axon fascicles; the latter, the neuropil glia, constitute two subgroups: complex glia with large cell bodies and branching, vellate arbors; and simple glia, with multiple, mostly unbranched processes with many lamellate expansions along their lengths. The processes of complex glia appear to be closely associated with axon fascicles as they enter the glomeruli, while those of the simple glia surround the glomeruli as part of a multi-lamellar glial envelope, their processes rarely invading the synaptic neuropil of the body of the glomerulus. The full morphological development of antennal-lobe glial cells requires more than two-thirds of metamorphic development. During this period, cells that began as cuboidal or spindle-shaped cells that were extensively dye-coupled to one another gradually assume their adult form and, at least under nonstimulated conditions, greatly reduce their coupling. These changes are only weakly dependent on the presence of olfactory receptor axons. Glial processes are somewhat shorter and less branched in the absence of these axons, but basic structure and degree of dye-coupling are unchanged.  相似文献   

18.
Lipoproteins originating from axon and myelin breakdown in injured peripheral nerves are believed to supply cholesterol to regenerating axons. We have used compartmented cultures of rat sympathetic neurons to investigate the utilization of lipids from lipoproteins for axon elongation. Lipids and proteins from human low density lipoproteins (LDL) and high density lipoproteins (HDL) were taken up by distal axons and transported to cell bodies, whereas cell bodies/proximal axons internalized these components from only LDL, not HDL. Consistent with these observations, the impairment of axonal growth, induced by inhibition of cholesterol synthesis, was reversed when LDL or HDL were added to distal axons or when LDL, but not HDL, were added to cell bodies. LDL receptors (LDLRs) and LR7/8B (apoER2) were present in cell bodies/proximal axons and distal axons, with LDLRs being more abundant in the former. Inhibition of cholesterol biosynthesis increased LDLR expression in cell bodies/proximal axons but not distal axons. LR11 (SorLA) was restricted to cell bodies/proximal axons and was undetectable in distal axons. Neither the LDL receptor-related protein nor the HDL receptor, SR-B1, was detected in sympathetic neurons. These studies demonstrate for the first time that lipids are taken up from lipoproteins by sympathetic neurons for use in axonal regeneration.  相似文献   

19.
We have examined the distribution of microtubule-associated protein 2 (MAP2) in the lumbar segment of spinal cord, ventral and dorsal roots, and dorsal root ganglia of control and beta,beta'-iminodipropionitrile- treated rats. The peroxidase-antiperoxidase technique was used for light and electron microscopic immunohistochemical studies with two monoclonal antibodies directed against different epitopes of Chinese hamster brain MAP2, designated AP9 and AP13. MAP2 immunoreactivity was present in axons of spinal motor neurons, but was not detected in axons of white matter tracts of spinal cord and in the majority of axons of the dorsal root. A gradient of staining intensity among dendrites, cell bodies, and axons of spinal motor neurons was present, with dendrites staining most intensely and axons the least. While dendrites and cell bodies of all neurons in the spinal cord were intensely positive, neurons of the dorsal root ganglia were variably stained. The axons of labeled dorsal root ganglion cells were intensely labeled up to their bifurcation; beyond this point, while only occasional central processes in dorsal roots were weakly stained, the majority of peripheral processes in spinal nerves were positive. beta,beta'- Iminodipropionitrile produced segregation of microtubules and membranous organelles from neurofilaments in the peripheral nervous system portion and accumulation of neurofilaments in the central nervous system portion of spinal motor axons. While both anti-MAP2 hybridoma antibodies co-localized with microtubules in the central nervous system portion, only one co-localized with microtubules in the peripheral nervous system portion of spinal motor axons, while the other antibody co-localized with neurofilaments and did not stain the central region of the axon which contained microtubules. These findings suggest that (a) MAP2 is present in axons of spinal motor neurons, albeit in a lower concentration or in a different form than is present in dendrites, and (b) the MAP2 in axons interacts with both microtubules and neurofilaments.  相似文献   

20.
Climbing fiber afferents to the cerebellum, from the inferior olivary complex, have a powerful excitatory effect on Purkinje cells. Changes in the responsiveness of olivary neurons to their afferent inputs, leading to changes in the firing rate or pattern of activation in climbing fibers, have a significant effect on the activation of cerebellar neurons and ultimately on cerebellar function. Several neuropeptides have been localized in both varicosities and cell bodies of the mouse inferior olivary complex, one of which, calcitonin gene related peptide (CGRP), has been shown to modulate the activity of olivary neurons. The purpose of the present study was to investigate the synaptic relationships of CGRP-containing components of the caudal medial accessory olive and the principal olive of adult mice, using immunohistochemistry and electron microscopy. The vast majority of immunoreactive profiles were dendrites and dendritic spines within and outside the glial boundaries of synaptic glomeruli (clusters). Both received synaptic inputs from non-CGRP labeled axon terminals. CGRP was also present within the somata of olivary neurons as well as in profiles that had cytological characteristics of axons, some of which were filled with synaptic vesicles. These swellings infrequently formed synaptic contacts. At the LM level, few, if any, CGRP-immunoreactive climbing fibers, were seen, suggesting that CGRP is compartmentalized within the somata and dendrites of olivary neurons and is not transported to their axon terminals. Thus, in addition to previously identified extrinsic sources of CGRP, the widespread distribution of CGRP within olivary somata and dendrites identifies an intrinsic source of the peptide suggesting the possibility of dendritic release and a subsequent autocrine or paracrine function for this peptide within olivary circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号