首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a new assay for membrane fusion between late Golgi/endosomal compartments, we have reconstituted a rapid, robust homotypic fusion reaction between membranes containing Kex2p and Ste13p, two enzymes resident in the yeast trans-Golgi network (TGN). Fusion was temperature, ATP, and cytosol dependent. It was inhibited by dilution, Ca+2 chelation, N-ethylmaleimide, and detergent. Coimmunoisolation confirmed that the reaction resulted in cointegration of the two enzymes into the same bilayer. Antibody inhibition experiments coupled with antigen competition indicated a requirement for soluble NSF attachment protein receptor (SNARE) proteins Tlg1p, Tlg2p, and Vti1p in this reaction. Membrane fusion also required the rab protein Vps21p. Vps21p was sufficient if present on either the Kex2p or Ste13p membranes alone, indicative of an inherent symmetry in the reaction. These results identify roles for a Tlg SNARE complex composed of Tlg1p, Tlg2p, Vti1p, and the rab Vps21p in this previously uncharacterized homotypic TGN fusion reaction.  相似文献   

2.
N J Bryant  D E James 《The EMBO journal》2001,20(13):3380-3388
Sec1p-like/Munc-18 (SM) proteins bind to t-SNAREs and inhibit ternary complex formation. Paradoxically, the absence of SM proteins does not result in constitutive membrane fusion. Here, we show that in yeast cells lacking the SM protein Vps45p, the t-SNARE Tlg2p is down-regulated, to undetectable levels, by rapid proteasomal degradation. In the absence of Vps45p, Tlg2p can be stabilized through abolition of proteasome activity. Surprisingly, the stabilized Tlg2p was targeted to the correct intracellular location. However, the stabilized Tlg2p is non-functional and unable to bind its cognate SNARE binding partners, Tlg1p and Vti1p, in the absence of Vps45p. A truncation mutant lacking the first 230 residues of Tlg2p no longer bound Vps45p but was able to form complexes with Tlg1p and Vti1p in the absence of the SM protein. These data provide us with two valuable insights into the function of SM proteins. First, SM proteins act as chaperone-like molecules for their cognate t-SNAREs. Secondly, SM proteins play an essential role in the activation process allowing their cognate t-SNARE to participate in ternary complex formation.  相似文献   

3.
The t-SNARE in a late Golgi compartment (Tlg2p) syntaxin is required for endocytosis and localization of cycling proteins to the late Golgi compartment in yeast. We show here that Tlg2p assembles with two light chains, Tlg1p and Vti1p, to form a functional t-SNARE that mediates fusion, specifically with the v-SNAREs Snc1p and Snc2p. In vitro, this t-SNARE is inert, locked in a nonfunctional state, unless it is activated for fusion. Activation can be mediated by a peptide derived from the v-SNARE, which likely bypasses additional regulatory proteins in the cell. Locking t-SNAREs creates the potential for spatial and temporal regulation of fusion by signaling processes that unleash their fusion capacity.  相似文献   

4.
Sec1p/Munc18 (SM) proteins play a key role in the regulation of soluble N-ethylmaleimide-sensitive fusion (NSF)-attachment protein receptor (SNARE)-mediated intracellular membrane trafficking events in all eukaryotic cells. Understanding the molecular mechanisms by which SM proteins function has not been straight forward as SM proteins bind to their cognate SNARE proteins by at least two distinct mechanisms, suggesting that they provide more than one function. We have previously characterised two binding modes used by the yeast SM protein Vps45p to interact with its SNARE proteins. In one of these modes, the N terminus of the syntaxin Tlg2p inserts into a hydrophobic pocket in the SM protein. We now report that disruption of this high-affinity binding between Vps45p and Tlg2p leads to downregulation of Tlg2p, and propose that this pocket-mode of binding of SM proteins to their cognate syntaxins serves to regulate cellular levels of the syntaxin.  相似文献   

5.
Two syntaxin homologues in the TGN/endosomal system of yeast.   总被引:30,自引:2,他引:28       下载免费PDF全文
Intracellular membrane traffic is thought to be regulated in part by SNAREs, integral membrane proteins on transport vesicles (v-SNAREs) and target organelles (t-SNAREs) that bind to each other and mediate bilayer fusion. All known SNARE-mediated fusion events involve a member of the syntaxin family of t-SNAREs. Sequence comparisons identify eight such proteins encoded in the yeast genome, of which six have been characterized. We describe here the remaining two, Tlg1p and Tlg2p. These have the expected biochemical properties of t-SNAREs, and are located in separable compartments which correspond to a putative early endosome and the yeast equivalent of the TGN, respectively. They co-precipitate with the v-SNARE Vti1p, which is implicated in Golgi-endosome traffic and, remarkably, binds to five different syntaxins. Tlg1p also binds the plasma membrane v-SNARE Snc1p. Both Tlg1p and Tlg2p are required for efficient endocytosis and to maintain normal levels of TGN proteins. However, neither is required for intra-Golgi traffic. Since no further syntaxins have been identified in yeast, this implies that the Golgi apparatus can function with a single syntaxin, Sed5p.  相似文献   

6.
Members of the syntaxin protein family participate in the docking-fusion step of several intracellular vesicular transport events. Tlg1p has been identified as a nonessential protein required for efficient endocytosis as well as the maintenance of normal levels of trans-Golgi network proteins. In this study we independently describe Tlg1p as an essential protein required for cell viability. Depletion of Tlg1p in vivo causes a defect in the transport of the vacuolar protein carboxypeptidase Y through the early Golgi. Temperature-sensitive (ts) mutants of Tlg1p also accumulate the endoplasmic reticulum/cis-Golgi form of carboxypeptidase Y at the nonpermissive temperature (38 degrees C) and exhibit underglycosylation of secreted invertase. Overexpression of Tlg1p complements the growth defect of vti1-11 at the nonpermissive temperature, whereas incomplete complementation was observed with vti1-1, further suggesting a role for Tlg1p in the Golgi apparatus. Overexpression of Sed5p decreases the viability of tlg1 ts mutants compared with wild-type cells, suggesting that tlg1 ts mutants are more susceptible to elevated levels of Sed5p. Tlg1p is able to bind His6-tagged Sec17p (yeast alpha-SNAP) in a dose-dependent manner and enters into a SNARE complex with Vti1p, Tlg2p, and Vps45p. Morphological analyses by electron microscopy reveal that cells depleted of Tlg1p or tlg1 ts mutants incubated at the restrictive temperature accumulate 40- to 50-nm vesicles and experience fragmentation of the vacuole.  相似文献   

7.
How Tlg2p/syntaxin 16 'snares' Vps45   总被引:7,自引:0,他引:7  
Soluble N-ethylmaleimide sensitive factor-attachment protein receptors (SNAREs) and Sec1p/Munc18-homologs (SM proteins) play key roles in intracellular membrane fusion. The SNAREs form tight four-helix bundles (core complexes) that bring the membranes together, but it is unclear how this activity is coupled to SM protein function. Studies of the yeast trans-Golgi network (TGN)/endosomal SNARE complex, which includes the syntaxin-like SNARE Tlg2p, have suggested that its assembly requires activation by binding of the SM protein Vps45p to the cytoplasmic region of Tlg2p folded into a closed conformation. Nuclear magnetic resonance and biochemical experiments now show that Tlg2p and Pep12p, a late- endosomal syntaxin that interacts functionally but not directly with Vps45p, have a domain structure characteristic of syntaxins but do not adopt a closed conformation. Tlg2p binds tightly to Vps45p via a short N-terminal peptide motif that is absent in Pep12p. The Tlg2p/Vps45p binding mode is shared by the mammalian syntaxin 16, confirming that it is a Tlg2p homolog, and resembles the mode of interaction between the SM protein Sly1p and the syntaxins Ufe1p and Sed5p. Thus, this mechanism represents the most widespread mode of coupling between syntaxins and SM proteins.  相似文献   

8.
SNARE proteins on transport vesicles and target membranes have important roles in vesicle targeting and fusion. Therefore, localization and activity of SNAREs have to be tightly controlled. Regulatory proteins bind to N-terminal domains of some SNAREs. vti1b is a mammalian SNARE that functions in late endosomal fusion. To investigate the role of the N terminus of vti1b we performed a yeast two-hybrid screen. The N terminus of vti1b interacted specifically with the epsin N-terminal homology (ENTH) domain of enthoprotin/CLINT/epsinR. The interaction was confirmed using in vitro binding assays. This complex formation between a SNARE and an ENTH domain was conserved between mammals and yeast. Yeast Vti1p interacted with the ENTH domain of Ent3p. ENTH proteins are involved in the formation of clathrin-coated vesicles. Both epsinR and Ent3p bind adaptor proteins at the trans-Golgi network. Vti1p is required for multiple transport steps in the endosomal system. Genetic interactions between VTI1 and ENT3 were investigated. Synthetic defects suggested that Vti1p and Ent3p cooperate in transport from the trans-Golgi network to the prevacuolar endosome. Our experiments identified the first cytoplasmic protein binding to specific ENTH domains. These results point toward a novel function of the ENTH domain and a connection between proteins that function either in vesicle formation or in vesicle fusion.  相似文献   

9.
A new yeast endosomal SNARE related to mammalian syntaxin 8   总被引:3,自引:0,他引:3  
We report the identification of a yeast SNARE that has escaped notice because of an apparent error in the genome sequence and because it is functionally redundant. It is encoded by an extended version of ORF YAL014c, and since its SNARE motif is related to mammalian syntaxin 8 we term the gene SYN8 . Syn8p is in endosomes. Co-precipitation indicates a set of complexes containing Pep12p, Vti1p, either Syn8p or Tlg1p and either Snc1p or Ykt6p. Analysis of growth and trafficking defects demonstrates that in the absence of Tlg1p, Syn8p is required for Pep12p function. Conversely, when Tlg1p is present, Syn8p can be removed without loss of Pep12p function, or induction of any other obvious trafficking defect. Syn8p thus appears to be a functional homolog of mammalian syntaxin 8, but Tlg1p can, amongst other roles, provide an equivalent function .  相似文献   

10.
In protein transport between organelles, interactions of v- and t-SNARE proteins are required for fusion of protein-containing vesicles with appropriate target compartments. Mammalian SNARE proteins have been observed to interact with NSF and SNAP, and yeast SNAREs with yeast homologues of NSF and SNAP proteins. This observation led to the hypothesis that, despite low sequence homology, SNARE proteins are structurally similar among eukaryotes. SNARE proteins can be classified into two groups depending on whether they interact with SNARE binding partners via conserved glutamine (Q-SNAREs) or arginine (R-SNAREs). Much of the published structural data available is for SNAREs involved in exocytosis (either in yeast or synaptic vesicles). This paper describes circular dichroism, Fourier transform infrared spectroscopy, and dynamic light scattering data for a set of yeast v- and t-SNARE proteins, Vti1p and Pep12p, that are Q-SNAREs involved in intracellular trafficking. Our results suggest that the secondary structure of Vti1p is highly alpha-helical and that Vti1p forms multimers under a variety of solution conditions. In these respects, Vti1p appears to be distinct from R-SNARE proteins characterized previously. The alpha-helicity of Vti1p is similar to that of Q-SNARE proteins characterized previously. Pep12p, a Q-SNARE, is highly alpha-helical. It is distinct from other Q-SNAREs in that it forms dimers under many of the solution conditions tested in our experiments. The results presented in this paper are among the first to suggest heterogeneity in the functioning of SNARE complexes.  相似文献   

11.
Vam3p, a syntaxin-like SNARE protein involved in yeast vacuole fusion, is composed of a three-helical N-terminal domain, a canonical SNARE motif, and a C-terminal transmembrane region (TMR). Surprisingly, we find that the N-terminal domain of Vam3p is not essential for fusion, although analogous domains in other syntaxins are indispensible for fusion and/or protein-protein interactions. In contrast to the N-terminal domain, mutations in the SNARE motif of Vam3p or replacement of the SNARE motif of Vam3p with the SNARE motif from other syntaxins inhibited fusion. Furthermore, the precise distance between the SNARE motif and the TMR was critical for fusion. Insertion of only three residues after the SNARE motif significantly impaired fusion and insertion of 12 residues abolished fusion. As judged by co-immunoprecipitation experiments, the SNARE motif mutations and the insertions did not alter the association of Vam3p with Vam7p, Vti1p, Nyv1p, and Ykt6p, other vacuolar SNARE proteins implicated in fusion. In contrast, the SNARE motif substitutions interfered with the stable formation of Vam3p complexes with Nyv1p and Vti1p, although Vam3p complexes with Vam7p and Ykt6p were still present. Our data suggest that in contrast to previously characterized syntaxins, Vam3p contains only two domains essential for fusion, the SNARE motif and the TMR, and these domains have to be closely coupled to function in fusion.  相似文献   

12.
Sec1p/Munc18 (SM) proteins are essential for SNARE-mediated membrane trafficking. The formulation of unifying hypotheses for the function of the SM protein family has been hampered by the observation that two of its members bind their cognate syntaxins (Sxs) in strikingly different ways. The SM protein Vps45p binds its Sx Tlg2p in a manner analogous to that captured by the Sly1p-Sed5p crystal structure, whereby the NH2-terminal peptide of the Sx inserts into a hydrophobic pocket on the outer face of domain I of the SM protein. In this study, we report that although this mode of interaction is critical for the binding of Vps45p to Tlg2p, the SM protein also binds Tlg2p-containing SNARE complexes via a second mode that involves neither the NH2 terminus of Tlg2p nor the region of Vps45p that facilitates this interaction. Our findings point to the possibility that SM proteins interact with their cognate SNARE proteins through distinct mechanisms at different stages in the SNARE assembly/disassembly cycle.  相似文献   

13.
Vacuole SNAREs, including the t-SNAREs Vam3p and Vam7p and the v-SNARE Nyv1p, are found in a multisubunit "cis" complex on isolated organelles. We now identify the v-SNAREs Vti1p and Ykt6p by mass spectrometry as additional components of the immunoisolated vacuolar SNARE complex. Immunodepletion of detergent extracts with anti-Vti1p removes all the Ykt6p that is in a complex with Vam3p, immunodepletion with anti-Ykt6p removes all the Vti1p that is complexed with Vam3p, and immunodepletion with anti-Nyv1p removes all the Ykt6p in complex with other SNAREs, demonstrating that they are all together in the same cis multi-SNARE complex. After priming, which disassembles the cis-SNARE complex, antibodies to any of the five SNARE proteins still inhibit the fusion assay until the docking stage is completed, suggesting that each SNARE plays a role in docking. Furthermore, vti1 temperature-sensitive alleles cause a synthetic fusion-defective phenotype in our reaction. Our data show that vacuole-vacuole fusion requires a cis-SNARE complex of five SNAREs, the t-SNAREs Vam3p and Vam7p and the v-SNAREs Nyv1p, Vti1p, and Ykt6p.  相似文献   

14.
SNARE proteins are required for fusion of transport vesicles with target membranes. Previously, we found that the yeast Q-SNARE Vti1p is involved in transport to the cis-Golgi, to the prevacuole/late endosome, and to the vacuole. Here we identified a previously uncharacterized gene, VTS1, and the R-SNARE YKT6 both as multicopy and as low copy suppressors of the growth and vacuolar transport defect in vti1-2 cells. Ykt6p was known to function in retrograde traffic to the cis-Golgi and homotypic vacuolar fusion. We found that VTI1 and YKT6 also interacted in traffic to the prevacuole and vacuole, indicating that these SNARE complexes contain Ykt6p, Vti1p, plus Pep12p and Ykt6p, Vti1p, Vam3p, plus Vam7p, respectively. As Ykt6p was required for several transport steps, R-SNAREs cannot be the sole determinants of specificity. To study the role of the 0 layer in the SNARE motif, we introduced the mutations vti1-Q158R and ykt6-R165Q. SNARE complexes to which Ykt6p contributed a fourth glutamine residue in the 0 layer were nonfunctional, suggesting an essential function for arginine in the 0 layer of these complexes. vti1-Q158R cells had severe defects in several transport steps, indicating that the second arginine in the 0 layer interfered with function.  相似文献   

15.
Membrane traffic requires vesicles to fuse with a specific target, and SNARE proteins and Rab/Ypt GTPases contribute to this specificity. In the yeast Saccharomyces cerevisae, the Rab/Ypt GTPase Ypt6p is required for fusion of endosome-derived vesicles with the late Golgi. We have shown previously that activation of Ypt6p depends on its exchange factor, Ric1p-Rgp1p, a peripheral membrane protein complex restricted to the Golgi. We show here that a conserved trimeric protein complex, VFT (Vps52/53/54), binds directly to Ypt6p:GTP. Localization of VFT to the Golgi requires Ypt6p, but is unaffected in gos1 and tlg1 mutants, in which late Golgi integral membrane proteins, including SNAREs, are mislocalized. The VFT complex also binds directly to the N-terminal domain of the SNARE Tlg1p, both in vitro and in vivo, in a Ypt6p-independent manner. We suggest that the VFT complex links vesicles containing Tlg1p to their target, which is defined by the local activation of Ypt6p.  相似文献   

16.
Structural analysis of the interaction between the SNARE Tlg1 and Vps51   总被引:2,自引:0,他引:2  
Membrane fusion in cells involves the interaction of SNARE proteins on apposing membranes. Formation of SNARE complexes is preceded by tethering events, and a number of protein complexes that are thought to mediate this have been identified. The VFT or GARP complex is required for endosome-Golgi traffic in yeast. It consists of four subunits, one of which, Vps51, has been shown to bind specifically to the SNARE Tlg1, which participates in the same fusion event. We have determined the structure of the N-terminal domain of Tlg1 bound to a peptide from the N terminus of Vps51. Binding depends mainly on residues 18-30 of Vps51. These form a short helix which lies in a conserved groove in the three-helix bundle formed by Tlg1. Surprisingly, although both Vps51 and Tlg1 are required for transport to the late Golgi from endosomes, removal of the Tlg1-binding sequences from Vps51 does not block such traffic in vivo. Thus, this particular interaction cannot be crucial to the process of vesicle docking or fusion.  相似文献   

17.
Intracellular membrane fusion in eukaryotic cells is mediated by SNARE (soluble N-ethylmaleimide sensitive factor (NSF) attachment protein receptor) proteins and is known to involve assembly of cognate subunits to heterooligomeric complexes. For synaptic SNAREs, it has previously been shown that the transmembrane segments drive homotypic and support heterotypic interactions. Here, we demonstrate that a significant fraction of the yeast vacuolar SNARE Vam3p is a homodimer in detergent extracts of vacuolar membranes. This homodimer exists in parallel to the heterooligomeric SNARE complex. A Vam3p homodimer also formed from the isolated recombinant protein. Interestingly, homodimerization depended on the transmembrane segment. In contrast, formation of the quaternary SNARE complex from recombinant Vam3p, Nyv1p, Vti1p, and Vam7p subunits did not depend on the transmembrane segment of Vam3p nor on the transmembrane segments of its partner proteins. We conclude that Vam3p homodimerization, but not quaternary SNARE complex formation, is promoted by TMS-TMS interaction. As the transmembrane segments of Vam3p and other SNARE homologues were previously shown to be critical for membrane fusion downstream of membrane apposition, our results may shed light on the functional significance of SNARE TMS-TMS interactions.  相似文献   

18.
The epsin-related adaptor proteins Ent3p and Ent5p participate in budding of clathrin coated vesicles in transport between trans-Golgi network and endosomes in yeast. Transport of the arginine permease Can1p was analyzed, which recycles between plasma membrane and endosomes and can be targeted to the vacuole for degradation. ent3∆ cells accumulate Can1p-GFP in endosomes. Can1p-GFP is transported faster to the vacuole upon induction of degradation in ent5∆ cells than in wild type cells. The C-terminal domain of Ent5p was sufficient to restore recycling of the secretory SNARE GFP-Snc1p between plasma membrane and TGN in ent3∆ ent5∆ cells. The SNARE Tlg2p was identified as interaction partner of the Ent5p ENTH domain by in vitro binding assays and the interaction site on Ent5p was mapped. Tlg2p functions in transport from early endosomes to the trans-Golgi network and in homotypic fusion of these organelles. Tlg2p is partially shifted to denser fractions in sucrose density gradients of organelles from ent5∆ cells while distribution of Kex2p is unaffected demonstrating that Ent5p acts as cargo adaptor for Tlg2p in vivo. Taken together we show that Ent3p and Ent5p have different roles in transport and function as cargo adaptors for distinct SNAREs.  相似文献   

19.
BTN2 gene expression in the yeast Saccharomyces cerevisiae is up-regulated in response to the deletion of BTN1, which encodes the ortholog of a human Batten disease protein. We isolated Btn2 as a Snc1 v-SNARE binding protein using the two-hybrid assay and examined its role in intracellular protein trafficking. We show that Btn2 is an ortholog of the Drosophila and mammalian Hook1 proteins that interact with SNAREs, cargo proteins, and coat components involved in endosome-Golgi protein sorting. By immunoprecipitation, it was found that Btn2 bound the yeast endocytic SNARE complex (e.g., Snc1 and Snc2 [Snc1/2], Tlg1, Tlg2, and Vti1), the Snx4 sorting nexin, and retromer (e.g., Vps26 and Vps35). In in vitro binding assays, recombinant His(6)-tagged Btn2 bound glutathione S-transferase (GST)-Snc1 and GST-Vps26. Btn2-green fluorescent protein and Btn2-red fluorescent protein colocalize with Tlg2, Snx4, and Vps27 to a compartment adjacent to the vacuole that corresponds to a late endosome. The deletion of BTN2 blocks Yif1 retrieval back to the Golgi apparatus, while the localization of Ste2, Fur4, Snc1, Vps10, carboxypeptidases Y (CPY) and S (CPS), Sed5, and Sec7 is unaltered in btn2Delta cells. Yif1 delivery to the vacuole was observed in other late endosome-Golgi trafficking mutants, including ypt6Delta, snx4Delta, and vps26Delta cells. Thus, Btn2 facilitates specific protein retrieval from a late endosome to the Golgi apparatus, a process which may be adversely affected in patients with Batten disease.  相似文献   

20.
Intracellular membrane trafficking pathways must be tightly regulated to ensure proper functioning of all eukaryotic cells. Central to membrane trafficking is the formation of specific SNARE (soluble N-ethylmeleimide-sensitive factor attachment protein receptor) complexes between proteins on opposing lipid bilayers. The Sec1/Munc18 (SM) family of proteins play an essential role in SNARE-mediated membrane fusion, and like the SNAREs are conserved through evolution from yeast to humans. The SM protein Vps45 is required for the formation of yeast endosomal SNARE complexes and is thus essential for traffic through the endosomal system. Here we report that, in addition to its role in regulating SNARE complex assembly, Vps45 regulates cellular levels of its SNARE binding partners: the syntaxin Tlg2 and the v-SNARE Snc2: Cells lacking Vps45 have reduced cellular levels of Tlg2 and Snc2; and elevation of Vps45 levels results in concomitant increases in the levels of both Tlg2 and Snc2. As well as regulating traffic through the endosomal system, the Snc v-SNAREs are also required for exocytosis. Unlike most vps mutants, cells lacking Vps45 display multiple growth phenotypes. Here we report that these can be reversed by selectively restoring Snc2 levels in vps45 mutant cells. Our data indicate that as well as functioning as part of the machinery that controls SNARE complex assembly, Vps45 also plays a key role in determining the levels of its cognate SNARE proteins; another key factor in regulation of membrane traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号