首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 636 毫秒
1.
2.
核基质蛋白Ciz1(Cdkn1A-interacting zinc finger protein 1)是在酵母双杂交系统中寻找能与p21 Cip1/Waf1结合并调节其细胞核定位时发现的锌指蛋白。当分别过表达Ciz1和p21 Cip1/Waf1时,它们均主要定位于细胞核,而当共转染时,则均从细胞核转位到细胞质。在小鼠3T3 细胞中,Ciz1可以协同CDK2、细胞周期蛋白E和细胞周期蛋白 A启动DNA的复制,并促进细胞由G1期进入S期。此外,Ciz1还具有结合DNA的能力并参与对转录因子的活性调控,同时,Ciz1还可能作为蛋白激酶ATM的底物参与DNA的损伤修复。近年来研究发现,Ciz1除与阿尔茨海默病和肌张力失常等疾病相关以外,还在肺癌、结肠癌和乳腺癌等多种肿瘤组织中呈现高表达,参与肿瘤的发生和发展过程。本文主要就Ciz1的结构功能及与肿瘤的关系作一综述。  相似文献   

3.
A p21(Cip1/Waf1/Sdi1) is known to act as a negative cell-cycle regulator by inhibiting kinase activity of a variety of cyclin-dependent kinases. In addition to binding of the cyclin-dependent kinase to the N-terminal region of p21, p21 is also bound at its C-terminal region by proliferating cell nuclear antigen (PCNA), SET/TAF1, and calmodulin, indicating the versatile function of p21. In this study, we cloned cDNA encoding a novel protein named TOK-1 as a p21 C-terminal-binding protein by a two-hybrid system. Two splicing isoforms of TOK-1, TOK-1alpha and TOK-1beta, comprising 322 and 314 amino acids, respectively, were co-localized with p21 in nuclei and showed a similar expression profile to that of p21 in human tissues. TOK-1alpha, but not TOK-1beta, directly bound to the C-terminal proximal region of p21, and both were expressed at the G(1)/S boundary of the cell cycle. TOK-1alpha also preferentially bound to an active form of cyclin-dependent kinase 2 (CDK2) via p21, and these made a ternary complex in human cells. Furthermore, the results of three different types of experiments showed that TOK-1alpha enhanced the inhibitory activity of p21 toward histone H1 kinase activity of CDK2. TOK-1alpha is thus thought to be a new type of CDK2 modulator.  相似文献   

4.
5.
The matrin 3 family of nuclear proteins consists of members with potentially diverse activities. Matrin 3 and NP220 share RNA-binding domains, and NP220 has been shown to recognize and bind to the DNA sequence, CCCCC (G/C). We have isolated and characterized another member of the matrin 3 family, designated NP94, from a medulloblastoma. This protein, also named Ciz1, has previously been characterized for its ability to interact with p21(Cip1/Waf1) and contains 3 zinc finger domains and a matrin 3-homologous domain 3. Our immunofluorescence and Northern blot analysis data indicate that Ciz1 is localized in the nucleus and is expressed in a wide range of tissues, especially the pancreas and the brain; within the brain, the highest message levels are found in the cerebellum. A modified selected and amplified binding (SAAB) sequence method was used to identify DNA sequences recognized by Ciz1. From the analysis of the retrieved SAAB sequences and verification using electrophoretic mobility shift assays, we formulated a consensus DNA sequence, ARYSR(0-2)YYAC, recognized by Ciz1. The potential activities of Ciz1, including those involved in brain tumorigenesis, are discussed.  相似文献   

6.
The cellular mechanisms regulating intestinal proliferation anddifferentiation remain largely undefined. Previously, we showed anearly induction of the cyclin-dependent kinase (CDK) inhibitor p21Waf1/Cip1 in Caco-2 cells, ahuman colon cancer line that spontaneously differentiates into a smallbowel phenotype. The purpose of our present study was to assess thetiming of cell cycle arrest in relation to differentiation in Caco-2cells and to examine the mechanisms responsible for CDK inactivation.Caco-2 cells undergo a relativeG1/S block and cease toproliferate at day3 postconfluency; an increase in theactivity of terminally differentiated brush-border enzymes (sucrase andalkaline phosphatase) was noted at day6 postconfluency. Cell cycle block wasassociated with suppression of both CDK2 and CDK4 activities, which areimportant for G1/S progression.Treatment of the CDK immune complexes with the detergent deoxycholate(DOC) resulted in restoration of CDK2, but not CDK4, activity atday 3 postconfluency, suggesting the presence of inhibitory protein(s)binding to the cyclin/CDK2 complex at this time point. An increasedbinding of p21Waf1/Cip1 to CDK2complexes at day3 postconfluency was noted, suggesting a potential role for p21Waf1/Cip1in CDK2 inactivation; however, immunodepletion ofp21Waf1/Cip1 from Caco-2 proteinextracts demonstrated thatp21Waf1/Cip1 is only partiallyresponsible for CDK2 suppression atday 3 postconfluency. A decrease in the cyclin E/CDK2 complex appears tocontribute to the CDK2 inactivation noted atdays6 and12 postconfluency. Taken together, ourresults suggest that multiple mechanisms contribute to CDK suppressionduring Caco-2 cell differentiation. Inhibition of CDK2 and CDK4 leadsto G1 arrest and inhibition ofproliferation that precede Caco-2 cell differentiation.

  相似文献   

7.
8.
9.
The sphingoplipid ceramide is responsible for a diverse range of biochemical and cellular responses including a putative role in modulating cell cycle progression. Herein, we describe that an accumulation of ceramide, achieved through the exogenous application of C(6)-ceramide or exposure to sphingomyelinase, induces a G(2) arrest in Rhabdomyosarcoma (RMS) cell lines. Utilizing the RMS cell line RD, we show that this G(2) arrest required the rapid induction of p21(Cip1/Waf1) independent of DNA damage. This was followed at later time points (48 h) by the commitment to apoptosis. Apoptosis was prevented by Bcl-2 overexpression, but permitted the maintenance of elevated p21(Cip1/Waf1) protein expression and the stabilization of the G(2) arrest response. Inhibition of p21(Cip1/Waf1) protein synthesis with cyclohexamide (CHX) or silencing of p21(Cip1/Waf1) with siRNA, prevented ceramide-mediated G(2) arrest and the late induction of apoptosis. Further, adopting the recent discovery that murine double minute 2 (MDM2) controls p21(Cip1/Waf1) expression by presenting this CDK inhibitor to the proteasome for degradation, RD cells overexpressing MDM2 abrogated ceramide-mediated p21(Cip1/Waf1) induction, G(2) arrest and the late ensuing apoptosis. Collectively, these data further support the notion that ceramide accumulation can modulate cell cycle progression. Additionally, these observations highlight MDM2 expression and proteasomal activity as key determinants of the cellular response to ceramide accumulation.  相似文献   

10.
11.
Progestins are frequently used in the treatment of advanced breast and endometrial cancer. The human breast carcinoma cell line T47D shows a biphasic response to progestins. Short-term progestin treatment leads to enhanced DNA synthesis, while this line is growth inhibited upon prolonged exposure. An important protein involved in growth regulation by progestins in this cell is the CDK inhibitor p21(Cip1,Waf1). We show that after 1 day of progestin treatment in T47D cells, the p21 promoter-proximal region containing Sp1 binding sites is crucial in the induction by progestins. However, after 3 days the activity of the promoter-distal region becomes predominant in T47D cells or the endometrial carcinoma cell line ECC1. This is dependent upon two domains within this region that contain p53 response elements. In ECC1 and T47D cells 3-day progestin treatment induces a reporter containing a p53 response element, but not a mutated version. This induction is due to activation of p53 by progestin, which may be caused by nuclear translocation of p53. These data indicate that upon prolonged exposure, progestins activate p53, in human breast and endometrial tumor cells, which up-regulates the p21(Cip1,Waf1) promoter. This may be an important mechanism involved in progestin-inhibited cellular proliferation in these cells.  相似文献   

12.
13.
p21(Cip1/WAF1) inhibits cell-cycle progression by binding to G1 cyclin/CDK complexes and proliferating cell nuclear antigen (PCNA) through its N- and C-terminal domains, respectively. The cell-cycle inhibitory activity of p21(Cip1/WAF1) is correlated with its nuclear localization. Here, we report a novel cytoplasmic localization of p21(Cip1/WAF1) in peripheral blood monocytes (PBMs) and in U937 cells undergoing monocytic differentiation by in vitro treatment with vitamin D3 or ectopic expression of p21(Cip1/WAF1), and analyze the biological consequences of this cytoplasmic expression. U937 cells which exhibit nuclear p21(Cip1/WAF1) demonstrated G1 cell-cycle arrest and subsequently differentiated into monocytes. The latter event was associated with a cytoplasmic expression of nuclear p21(Cip1/WAF1), concomitantly with a resistance to various apoptogenic stimuli. Biochemical analysis showed that cytoplasmic p21(Cip1/WAF1) forms a complex with the apoptosis signal-regulating kinase 1 (ASK1) and inhibits stress-activated MAP kinase cascade. Expression of a deletion mutant of p21(Cip1/WAF1) lacking the nuclear localization signal (DeltaNLS-p21) did not induce cell cycle arrest nor monocytic differentiation, but led to an apoptosis-resistant phenotype, mediated by binding to and inhibition of the stress-activated ASK1 activity. Thus, cytoplasmic p21(Cip1/WAF1) itself acted as an inhibitor of apoptosis. Our findings highlight the different functional roles of p21(Cip1/WAF1), which are determined by its intracellular distribution and are dependent on the stage of differentiation.  相似文献   

14.
Chen X  Zhang W  Gao YF  Su XQ  Zhai ZH 《Cell research》2002,12(3-4):229-233
P21(Waf1/Cip1) is a potent cyclin-dependent kinase inhibitor. As a downstream mediator of p53, p21(Waf1/Cip1) involves in cell cycle arrest, differentiation and apoptosis. Previous studies in human cells provided evidence for a link between p21(Waf1/Cip1) and cellular senescence. While in murine cells, the role of p21(Waf1/Cip1) is indefinite. We explored this issue using NIH3T3 cells with inducible p21(Waf1/Cip1) expression. Induction of p21(Waf1/Cip1) triggered G1 growth arrest, and NIH3T3-p21 cells exhibited morphologic features, such as enlarged and flattened cellular shape, specific to the senescence phenotype. We also showed that p21(Waf1/Cip1)-transduced NIH3T3 cells expressed beta-galactosidase activity at pH 6.0, which is known to be a marker of senescence. Our results suggest that p2l(Waf1/Cip1) can also induce senescence-like changes in murine cells.  相似文献   

15.
Sesquicillin, isolated from fungal fermentation broth, strongly induced G1 phase arrest in human breast cancer cells. During G1 phase arrest, the expression level of cyclin D1, cyclin A, and cyclin E was decreased, and the expression of CDK (cyclin-dependent-kinase) inhibitor, protein p21(Waf1/Cip1), was increased in a time-dependent manner in a breast cancer cell MCF-7. Interestingly, the G1 phase arrest induced by sesquicillin also occurred independently of the tumor suppressor protein, p53. Sesquicillin inhibits the proliferation of MCF-7 via G1 phase arrest in association with the induction of CDK inhibitor protein, p21(Waf1/Cip1), and the reduction of G1 phase related-cyclin proteins.  相似文献   

16.
Protein kinase C (PKC) plays an important role in the regulation of glioma growth; however, the identity of the specific isoform and mechanism by which PKC fulfills this function remain unknown. In this study, we demonstrate that PKC activation in glioma cells increased their progression through the cell cycle. Of the six PKC isoforms that were present in glioma cells, PKC alpha was both necessary and sufficient to promote cell cycle progression when stimulated with phorbol 12-myristate 13-acetate. Also, decreased PKC alpha expression resulted in a marked decrease in cell proliferation. The only cell cycle-regulatory molecule whose expression was rapidly altered and increased by PKC alpha activity was the cyclin-cyclin-dependent kinase (CDK) inhibitor p21(Waf1/Cip1). Coimmunoprecipitation studies revealed that p21(Waf1/Cip1) upregulation was accompanied by an incorporation of p21(Waf1/Cip1) into various cyclin-CDK complexes and that the kinase activity of these complexes was increased, thus resulting in cell cycle progression. Furthermore, depletion of p21(Waf1/Cip1) by antisense strategy attenuated the PKC-induced cell cycle progression. These results suggest that PKC alpha activity controls glioma cell cycle progression through the upregulation of p21(Waf1/Cip1), which facilitates active cyclin-CDK complex formation.  相似文献   

17.
In response to treatment with phorbol-12-myristate-13-acetate (PMA), the half-population of erythromyeloblast D2 cells, a cytokine-independent variant of TF-1 cells, displayed adhesion and differentiated into a monocyte/macrophage-like morphology, while the other half-population remained in suspension and underwent apoptosis. Expression of the cell cycle inhibitor p21(Cip1/Waf1) was induced after PMA treatment in the adherent cells but not in the proapoptotic cells. We investigated the mechanism responsible for the impairment of p21(Cip1/Waf1) induction in PMA-induced proapoptotic cells. We demonstrated that in PMA-induced adherent cells, upregulation of p21(Cip1/Waf1) requires the activation and nuclear translocation of phosphorylated extracellular signal-regulated kinase (phospho-ERK). Although ERK was phosphorylated to comparable levels in PMA-induced proapoptotic and adherent cells, nuclear distribution of phospho-ERK was seen only in the adherent, not in the proapoptotic cells. We also found that only PMA-induced proapoptotic cells contained the phosphorylated form of myosin light chain, which is dependent on Rho-associated kinase (ROCK) activation, and that expression of a dominant-active form of ROCK suppressed activation of the p21(Cip1/Waf1) promoter during PMA induction. Finally, we demonstrated that inhibition of ROCK restores nuclear distribution of phospho-ERK and activation of p21(Cip1/Waf1) expression. Based on these findings, we propose that a ROCK-mediated signal is involved in interfering with the process of ERK-mediated p21(Cip1/Waf1) induction in PMA-induced proapoptotic TF-1 and D2 cells.  相似文献   

18.
19.
The BCCIPa protein was identified as a BRCA2 and CDKN1A (p21, or p21Waf1/Cip1) Interacting Protein. It binds to a highly conserved domain proximate to the C-terminus of BRCA2 protein and the C-terminal domain of the CDK-inhibitor p21. Previous reports showed that BCCIPa enhances the inhibitory activity of p21 toward CDK2 and that BCCIPa inhibits the growth of certain tumor cells. Here we show that a second isoform, BCCIPb, also binds to p21 and inhibits cell growth. The growth inhibition by BCCIPb can be partially abrogated in p21 deficient cells. Overexpression of BCCIPb delays the G1 to S progression and results in an elevated p21 expression. These data suggest BCCIPb as a new regulator for the G1-S cell cycle progression and cell growth control.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号