首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure and production characteristics of microbial communities from the Urinskii alkaline hot spring (Buryat Republic, Russia) have been investigated. A distinctive characteristic of this hot spring is the lack of sulfide in the issuing water. The water temperature near the spring vents ranged from 69 to 38.5°C and pH values ranged from 8.8 to 9.2. The total mineralization of water was less than 0.1 g/liter. Temperature has a profound effect on the species composition and biogeochemical processes occurring in the algal-bacterial mats of the Urinskii hot spring. The maximum diversity of the phototrophic community was observed at the temperatures 40 and 46°C. A total of 12 species of cyanobacteria, 4 species of diatoms, and one species of thermophilic anoxygenic phototrophic bacteria, Chloroflexus aurantiacus, have been isolated from mat samples. At temperatures above 40°C, the filamentous cyanobacterium Phormidium laminosum was predominant; its cell number and biomass concentration comprised 95.1 and 63.9%, respectively. At lower temperatures, the biomass concentrations of the cyanobacterium Oscillatoria limosa and diatoms increased (50.2 and 36.4%, respectively). The cyanobacterium Mastigocladus laminosus, which is normally found in neutral or slightly acidic hydrothermal systems, was detected in microbial communities. As the diatom concentration increases, so does the dry matter concentration in mats, while the content of organic matter decreases. The concentrations of proteins and carbohydrates reached their maximum levels at 45–50°C. The maximum average rate of oxygenic photosynthesis [2.1 g C/(m2 day)], chlorophyll a content (343.4 mg/m2), and cell number of phototrophic microorganisms were observed at temperatures from 45 to 50°C. The peak mass of bacterial mats (56.75 g/m2) occurred at a temperature of 65–60°C. The maximum biomass concentration of phototrophs (414.63 × 10?6 g/ml) and the peak rate of anoxygenic photosynthesis [0.42 g C/(m2 day)] were observed at a temperature of 35–40°C.  相似文献   

2.
Microbial communities growing in the bed of the alkaline, sulfide hot spring Bol'sherechenskii (the Baikal rift area) were studied over many years (1986-2001). The effluent water temperature ranged from 72 to 74 degrees C, pH was from 9.25 to 9.8, and sulfide content was from 12 to 13.4 mg/ml. Simultaneous effects of several extreme factors restrict the spread of phototrophic microorganisms. Visible microbial fouling appears with a decrease in the temperature to 62 degrees C and in the sulfide content to 5.9 mg/l. Cyanobacteria predominated in all biological zones of the microbial mat. The filamentous cyanobacteria of the genus Phormidium are the major mat-forming organisms, whereas unicellular cyanobacteria and the filamentous green bacterium Chloroflexus aurantiacus are minor components of the phototrophic communities. No cyanobacteria of the species Mastigocladus laminosus, typical of neutral and subacid springs, were identified. Seventeen species of both anoxygenic phototrophic bacteria and cyanobacteria were isolated from the microbial mats, most of which exhibited optimum growth at 20 to 45 degrees C. The anoxygenic phototrophs were neutrophiles with pH optimum at about 7. The cyanobacteria were the most adapted to the alkaline conditions in the spring. Their optimum growth was observed at pH 8.5-9.0. As determined by the in situ radioisotope method, the optimal growth and decomposition rates were observed at 40-32 degrees C, which is 10 to 15 degrees C lower than the same parameter in the sulfide-deficient Octopus Spring (Yellowstone, United States). The maximum chlorophyll a concentration was 555 mg/m2 at 40 degrees C. Total rate of photosynthesis in the mats reached 1.3 g C/m2 per day. The maximum rate of dark fixation of carbon dioxide in the microbial mats was 0.806 g C/m2 per day. The maximum rate of sulfate reduction comprised 0.367 g S/m2 per day at 40 degrees C. The rate of methanogenesis did not exceed 1.188 micrograms C/m2 per day. The role of methanogenesis in the terminal decomposition of the organic matter was insignificant. Methane formation consumed 100 times less organic matter than sulfate reduction.  相似文献   

3.
Namsaraev  Z. B.  Gorlenko  V. M.  Namsaraev  B. B.  Buryukhaev  S. P.  Yurkov  V. V. 《Microbiology》2003,72(2):193-203
Microbial communities growing in the bed of the alkaline, sulfide hot spring Bol'sherechenskii (the Baikal rift area) were studied over many years (1986–2001). The effluent water temperature ranged from 72 to 74°C, pH was from 9.25 to 9.8, and sulfide content was from 12 to 13.4 mg/ml. Simultaneous effects of several extreme factors restrict the spread of phototrophic microorganisms. Visible microbial mat appears with a decrease in the temperature to 62°C and in sulfide content to 5.9 mg/l. Cyanobacteria predominated in all biological zones of the microbial mat. The filamentous cyanobacteria of the genus Phormidium are the major mat-forming organisms, whereas unicellular cyanobacteria and the filamentous green bacterium Chloroflexus aurantiacus are minor components of the phototrophic communities. No cyanobacteria of the species Mastigocladus laminosus, typical of neutral and subacid springs, were identified. Seventeen species of both anoxygenic phototrophic bacteria and cyanobacteria were isolated from the microbial mats, most of which exhibited optimum growth at 20 to 45°C. The anoxygenic phototrophs were neutrophiles with pH optimum at about 7. The cyanobacteria were the most adapted to the alkaline conditions in the spring. Their optimum growth was observed at pH 8.5–9.0. As determined by the in situ radioisotope method, the optimal growth and decomposition rates were observed at 40–32°C, which is 10–15°C lower than the same parameter in the sulfide-deficient Octopus Spring (Yellowstone, United States). The maximum chlorophyll a concentration was 555 mg/m2 at 40°C. The total rate of photosynthesis in the mats reached 1.3 g C/m2 per day. The maximum rate of dark fixation of carbon dioxide in the microbial mats was 0.806 g C/m2 per day. The maximum rate of sulfate reduction comprised 0.367 g S/m2 per day at 40°C. The rate of methanogenesis did not exceed 1.188 g C/m2 per day. The role of methanogenesis in the terminal decomposition of the organic matter was insignificant. Methane formation consumed 100 times less organic matter than sulfate reduction.  相似文献   

4.
Species composition of anoxygenic phototrophic bacteria in microbial mats of the Goryachinsk thermal spring was investigated along the temperature gradient. The spring belonging to nitrogenous alkaline hydrotherms is located at the shore of Lake Baikal 188 km north-east from Ulan-Ude. The water is of the sulfate-sodium type, contains trace amounts of sulfide, and salinity does not exceed 0.64 g/L, pH 9.5. The temperature at the outlet of the spring may reach 54°C. The cultures of filamentous anoxygenic phototrophic bacteria, nonsulfur and sulfur purple bacteria, and aerobic anoxygenic phototrophic bacteria were identified using the pufLM molecular marker. The fmoA marker was used for identification of green sulfur bacteria. Filamentous cyanobacteria predominated in the mats, with anoxygenic phototrophs comprising a minor component of the phototrophic communities. Thermophilic bacteria Chloroflexus aurantiacus were detected in the samples from both the thermophilic and mesophilic mats. Cultures of nonsulfur purple bacteria similar to Blastochloris sulfoviridis and Rhodomicrobium vannielii were isolated from the mats developed at high (50.6–49.4°C) and low temperatures (45–20°C). Purple sulfur bacteria Allochromatium sp. and Thiocapsa sp., as well as green sulfur bacteria Chlorobium sp., were revealed in low-temperature mats. Truly thermophilic purple and green sulfur bacteria were not found in the spring. Anoxygenic phototrophic bacteria found in the spring were typical of the sulfur communities, for which the sulfur cycle is mandatory. The presence of aerobic bacteriochlorophyll a-containing bacteria identified as Agrobacterium (Rhizobium) tumifaciens in the mesophilic (20°C) mat is of interest.  相似文献   

5.
We investigated the genotypic diversity of oxygenic and anoxygenic phototrophic microorganisms in microbial mat samples collected from three hot spring localities on the east coast of Greenland. These hot springs harbour unique Arctic microbial ecosystems that have never been studied in detail before. Specific oligonucleotide primers for cyanobacteria, purple sulfur bacteria, green sulfur bacteria and Choroflexus/Roseiflexus-like green non-sulfur bacteria were used for the selective amplification of 16S rRNA gene fragments. Amplification products were separated by denaturing gradient gel electrophoresis (DGGE) and sequenced. In addition, several cyanobacteria were isolated from the mat samples, and classified morphologically and by 16S rRNA-based methods. The cyanobacterial 16S rRNA sequences obtained from DGGE represented a diverse, polyphyletic collection of cyanobacteria. The microbial mat communities were dominated by heterocystous and non-heterocystous filamentous cyanobacteria. Our results indicate that the cyanobacterial community composition in the samples were different for each sampling site. Different layers of the same heterogeneous mat often contained distinct and different communities of cyanobacteria. We observed a relationship between the cyanobacterial community composition and the in situ temperatures of different mat parts. The Greenland mats exhibited a low diversity of anoxygenic phototrophs as compared with other hot spring mats which is possibly related to the photochemical conditions within the mats resulting from the Arctic light regime.  相似文献   

6.
Oligodeoxynucleotide hybridization probes were developed to complement specific regions of the small subunit (SSU) rRNA sequences of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria, which inhabit hot spring microbial mats. The probes were used to investigate the natural distribution of SSU rRNAs from these species in mats of Yellowstone hot springs of different temperatures and pHs as well as changes in SSU rRNA distribution resulting from 1-week in situ shifts in temperature, pH, and light intensity. Synechococcus lividus Y-7c-s SSU rRNA was detected only in the mat of a slightly acid spring, from which it may have been initially isolated, or when samples from a more alkaline spring were incubated in the more acid spring. Chloroflexus aurantiacus Y-400-fl SSU rRNA was detected only in a high-temperature mat sample from the alkaline Octopus Spring or when lower-temperature samples from this mat were incubated at the high-temperature site. SSU rRNAs of uncultivated species were more widely distributed. Temperature distributions and responses to in situ temperature shifts suggested that some of the uncultivated cyanobacteria might be adapted to high-, moderate-, and low-temperature ranges whereas an uncultivated Chloroflexus-like bacterium appears to have broad temperature tolerance. SSU rRNAs of all uncultivated species inhabiting a 48 to 51 degrees C Octopus Spring mat site were most abundant in the upper 1 mm and were not detected below a 2.5-to 3.5-mm depth, a finding consistent with their possible phototrophic nature. However, the effects of light intensity reduction on these SSU rRNAs were variable, indicating the difficulty of demonstrating a phototrophic phenotype in light reduction experiments.  相似文献   

7.

Phototrophic bacterial mats from Kiran soda lake (south-eastern Siberia) were studied using integrated approach including analysis of the ion composition of water, pigments composition, bacterial diversity and the vertical distribution of phototrophic microorganisms in the mats. Bacterial diversity was investigated using microscopic examination, 16S rRNA gene Illumina sequencing and culturing methods. The mats were formed as a result of decomposition of sedimented planktonic microorganisms, among which cyanobacteria of the genus Arthrospira predominated. Cyanobacteria were the largest part of phototrophs in the mats, but anoxygenic phototrophs were significant fraction. The prevailing species of the anoxygenic phototrophic bacteria are typical for soda lakes. The mats harbored aerobic anoxygenic phototrophic bacteria, purple sulfur and non-sulfur bacteria, as well as new filamentous phototrophic Chloroflexi. New strains of Thiocapsa sp. Kir-1, Ectothiorhodospira sp. Kir-2 and Kir-4, Thiorhodospira sp. Kir-3 and novel phototrophic Chloroflexi bacterium Kir15-3F were isolated and identified.

  相似文献   

8.
Oligodeoxynucleotide hybridization probes were developed to complement specific regions of the small subunit (SSU) rRNA sequences of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria, which inhabit hot spring microbial mats. The probes were used to investigate the natural distribution of SSU rRNAs from these species in mats of Yellowstone hot springs of different temperatures and pHs as well as changes in SSU rRNA distribution resulting from 1-week in situ shifts in temperature, pH, and light intensity. Synechococcus lividus Y-7c-s SSU rRNA was detected only in the mat of a slightly acid spring, from which it may have been initially isolated, or when samples from a more alkaline spring were incubated in the more acid spring. Chloroflexus aurantiacus Y-400-fl SSU rRNA was detected only in a high-temperature mat sample from the alkaline Octopus Spring or when lower-temperature samples from this mat were incubated at the high-temperature site. SSU rRNAs of uncultivated species were more widely distributed. Temperature distributions and responses to in situ temperature shifts suggested that some of the uncultivated cyanobacteria might be adapted to high-, moderate-, and low-temperature ranges whereas an uncultivated Chloroflexus-like bacterium appears to have broad temperature tolerance. SSU rRNAs of all uncultivated species inhabiting a 48 to 51 degrees C Octopus Spring mat site were most abundant in the upper 1 mm and were not detected below a 2.5-to 3.5-mm depth, a finding consistent with their possible phototrophic nature. However, the effects of light intensity reduction on these SSU rRNAs were variable, indicating the difficulty of demonstrating a phototrophic phenotype in light reduction experiments.  相似文献   

9.
Stable carbon isotope signatures of diagnostic lipid biomarkers have suggested that Roseiflexus spp., the dominant filamentous anoxygenic phototrophic bacteria inhabiting microbial mats of alkaline siliceous hot springs, may be capable of fixing bicarbonate via the 3-hydroxypropionate pathway, which has been characterized in their distant relative, Chloroflexus aurantiacus. The genomes of three filamentous anoxygenic phototrophic Chloroflexi isolates (Roseiflexus sp. RS-1, Roseiflexus castenholzii and Chloroflexus aggregans), but not that of a non-photosynthetic Chloroflexi isolate (Herpetosiphon aurantiacus), were found to contain open reading frames that show a high degree of sequence similarity to genes encoding enzymes in the C. aurantiacus pathway. Metagenomic DNA sequences from the microbial mats of alkaline siliceous hot springs also contain homologues of these genes that are highly similar to genes in both Roseiflexus spp. and Chloroflexus spp. Thus, Roseiflexus spp. appear to have the genetic capacity for carbon dioxide reduction via the 3-hydroxypropionate pathway. This may contribute to heavier carbon isotopic signatures of the cell components of native Roseiflexus populations in mats compared with the signatures of cyanobacterial cell components, as a similar isotopic signature would be expected if Roseiflexus spp. were participating in photoheterotrophic uptake of cyanobacterial photosynthate produced by the reductive pentose phosphate cycle.  相似文献   

10.
The respiratory and photosynthetic quinones of microbial mats which occurred in Japanese sulfide-containing neutral-pH hot springs at different temperatures were analyzed by spectrochromatography and mass spectrometry. All of the microbial mats that developed at high temperatures (temperatures above 68°C) were so-called sulfur-turf bacterial mats and produced methionaquinones (MTKs) as the major quinones. A 78°C hot spring sediment had a similar quinone profile. Chloroflexus-mixed mats occurred at temperatures of 61 to 65°C and contained menaquinone 10 (MK-10) as the major component together with significant amounts of either MTKs or plastoquinone 9 (PQ-9). The sunlight-exposed biomats growing at temperatures of 45 to 56°C were all cyanobacterial mats, in which the photosynthetic quinones (PQ-9 and phylloquinone) predominated and MK-10 was the next most abundant component in most cases. Ubiquinones (UQs) were not found or were detected in only small amounts in the biomats growing at temperatures of 50°C and above, whereas the majority of the quinones of a purple photosynthetic mat growing at 34°C were UQs. A numerical analysis of the quinone profiles was performed by using the following three parameters: dissimilarity index (D), microbial divergence index (MDq), and bioenergetic divergence index (BDq). A D matrix tree analysis showed that the hot spring mats consisting of the sulfur-turf bacteria, Chloroflexus spp., cyanobacteria, and purple phototrophic bacteria formed distinct clusters. Analyses of MDq and BDq values indicated that the microbial diversity of hot spring mats decreased as the temperature of the environment increased. The changes in quinone profiles and physiological types of microbial mats in hot springs with thermal gradients are discussed from evolutionary viewpoints.  相似文献   

11.
Specific enrichment culture methods were used to isolate new phototrophic heliobacteria (anoxygenic phototrophic bacteria containing bacteriochlorophyll g) from various natural samples. A survey of terrestrial and aquatic habitats yielded heliobacteria only from soils, in particular rice soils, and from certain hot springs. Thirteen nonthermophilic and 7 thermophilic (capable of growth above 50) strains of heliobacteria were isolated from such habitats and characterized as to their basic cellular and nutritional properties. Phylogenetic studies of four strains showed them to be related to known species of heliobacteria. It is concluded that, unlike phototrophic purple and green bacteria, heliobacteria are primarily (if not exclusively) terrestrial, except for hot spring species. This suggests that the ecology of heliobacteria is fundamentally different from that of other anoxyphototrophs.  相似文献   

12.
Dense microbial mats and streamers of various colors developed in an alkaline-hot spring water at 48-76 degrees C and ~0.077 mm sulfide in Nakabusa, Japan. The microbial community structures with a thermal gradient were compared by denaturing gradient gel electrophoresis (DGGE) analysis of the PCR-amplified 16S ribosomal RNA gene fragments. The sequence analysis revealed that a predominant cyanobacterial DGGE band phylogenetically related to Synechococcus elongatus was detected only from green mats at 48 degrees C. Four DGGE bands were detected commonly from green mats at 48 degrees C, orange mats at 58 degrees C and brown mats at 60 degrees C. The sequence analysis revealed that these were phylogenetically related to Chloroflexaceae group, Rhodothermus group, a candidate division OP10, and an unclassified bacterium. On the other hand, Aquificae-, Thermodesulfobacteria-, Thermus group-, and Crenarchaeota-like sequences were detected as a predominant component of DGGE profiling from the streamers only at temperatures over 66 degrees C, but no phototrophic bacterial bands were detected. Thus, the microbial community structure above 60 degrees C was drastically different from that at the lower temperatures. After the addition of hydrogen into in vitro gray streamers with in situ spring water, sulfide production markedly occurred in the presence of ambient sulfate at 66 degrees C. This result suggests that in situ sulfide is partly produced by Thermodesulfobacteria-like sulfate-reducing bacteria in the streamers.  相似文献   

13.
The multi-layered microbial mats in the sand flats of Great Sippewissett Salt Marsh were found to have five distinct layers of phototrophic organisms. The top 1–3 mm contained oxygenic phototrophs. The lower 3–4 mm contained anoxygenic phototrophic bacteria. The uppermost gold layer contained diatoms and cyanobacteria, and chlorophyll a was the major chlorophyll. The next layer down was green and was composed of primarily filamentous cyanobacteria containing chlorophyll a. This was followed by a bright pink layer of bacteriochlorophyll b-containing purple sulfur bacteria. The lowest layer was a thin dull green layer of green sulfur bacteria containing bacteriochlorophyll c. The distribution of the chlorophylls with depth revealed that two-thirds of the total chlorophyll in the mat was composed of bacteriochlorophylls present in the anoxygenic phototrophys. The cyanobacterial layers and both purple sulfur bacterial layers had photoautotrophic activity. Light was attenuated in the uppermost layers so that less than 5% of the total radiation at the surface penetrated to the layers of anoxygenic phototrophys.  相似文献   

14.
The first enumeration of cultivable obligately aerobic phototrophic bacteria from a terrestrial saline spring was accomplished in the East German Creek system (salinity approximately 6%), near Lake Winnipegosis, Manitoba, Canada. Occurring at densities up to 3.3 x 10(7) CFU/ml of sample, aerobic phototrophs comprised 15-36% of the total cultivable bacterial population in the diatom- and chlorophyte-dominated aerobic microbial mats. Many of the representative strains isolated for phenotypic characterization and phylogenetic analysis possessed <96% 16S rDNA sequence overlap with published species, including an obligately aerobic phototrophic gammaproteobacterium displaying only 92.9% 16S rDNA sequence similarity to Congregibacter litoralis. The springs yielded the most highly halotolerant aerobic anoxygenic phototroph yet recorded, strain EG11, which grew with 26% NaCl.  相似文献   

15.
Microcoleus chthonoplastes dominated microbial mats are conspicuous along the shallow littoral zone in Lake Chiprana, a hypersaline lake located in the Ebro river basin in north-eastern Spain. Pigment data show that these mats included diatom species and anoxygenic phototrophs, Chloroflexus-type bacteria and purple bacteria. In situ, these mats showed low rates of dinitrogen fixation (acetylene reduction). Acetylene reduction was stimulated about 30-fold in excised mats after moderate phosphate fertilisation during 2 weeks incubation in a mesocosm. Pigment analyses showed that this treatment had little impact on the phototrophic community structure, except that it induced a decrease of Chloroflexus-type bacteria. The use of metabolic inhibitors indicated that methanogenic archaea and aerobic heterotrophic bacteria were the major dinitrogen fixers in this system. This is in agreement with the fact that the mat-building cyanobacterium M. chthonoplastes lacks the dinitrogenase reductase nifH gene and with the fact that acetylene reduction rates were strongly stimulated by additions of H2/CO2, methanol, fructose and sucrose, but not by lactate, acetate, formate and glucose. No significant differences where found for acetylene reduction rates when comparing light and dark incubations of these microbial mats. However, acetylene reduction rates were enhanced in the light when the near infrared (NIR) light was filtered out, which arrested anoxygenic photosynthesis. We suggest, therefore, that the chemoheterotrophic dinitrogen fixing bacteria were in competition with anoxygenic phototrophic bacteria for organic substrates, while the latter did not contribute to dinitrogen fixation in the mat.  相似文献   

16.
The lipid composition of Roseiflexus castenholzii, a thermophilic filamentous phototrophic bacterium related to uncultivated filamentous phototrophic bacteria that predominate in hot spring microbial mats, is reported. R. castenholzii lipid extracts were dominated by components characterized by alkane-1-ol-2-alkanoate moieties glycosidically bonded to a C(6) sugar. Similar fatty glycosides, with an additional fatty acid esterified, were detected by HPLC-MS. R. castenholzii also produces a suite of wax esters ranging from 37 to 40 carbon atoms in length. In lipid extracts from two nonsulfidic hot spring microbial mats, similar alkane-1,2-diol-based lipids were detected in minor amounts. R. castenholzii lipids are compared to lipids of mats and other thermophilic mat isolates.  相似文献   

17.
Simultaneous measurements of photosynthesis (both oxygenic and anoxygenic) and N(inf2) fixation were conducted to discern the relationships between photosynthesis, N(inf2) fixation, and environmental factors potentially regulating these processes in microbial mats in a tropical hypersaline lagoon (Salt Pond, San Salvador Island, Bahamas). Major photoautotrophs included cyanobacteria, purple phototrophic bacteria, and diatoms. Chemosystematic photopigments were used as indicators of the relative abundance of mat phototrophs. Experimental manipulations consisted of light and dark incubations of intact mat samples exposed to the photosystem II inhibitor DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea], a dissolved organic carbon source (D-glucose), and normal seawater (37(permil)). Photosynthetic rates were measured by both O(inf2) and (sup14)C methods, and nitrogenase activity (NA) was estimated by the acetylene reduction assay. Moderate reductions in salinity (from 74 to 37(permil)) had no measurable effect on photosynthesis, O(inf2) consumption, or NA. CO(inf2) fixation in DCMU-amended samples was (symbl)25% of that in the control (nonamended) samples and demonstrated photosynthetic activity by anoxygenic phototrophs. NA in DCMU-amended samples, which was consistently higher (by a factor of 2 to 3) than the other (light and dark) treatments, was also attributed to purple phototrophic bacteria. The ecological implication is that N(inf2) fixation by anoxygenic phototrophs (purple phototrophic bacteria and possibly cyanobacteria) may be regulated by the activity of oxygenic phototrophs (cyanobacteria and diatoms). Consortial interactions that enhance the physiological plasticity of the mat community may be a key for optimizing production, N(inf2) fixation, and persistence in these extreme environments.  相似文献   

18.
The structure of the phototrophic community found in Lake Khilganta (the Agin-Buryat Autonomous Area), a shallow saline soda lake (depth, 35-45 cm; water mineralization, 45 g/l; alkalinity, 30 mg-equiv/l; pH 9.5) has been studied. The bottom of the lake is covered with a 10- to 15-mm microbial mat, whose basis is formed by the filamentous cyanobacterium Microcoleus chthonoplastes. The mat exhibits pronounced layering and contains a significant amount of minerals. Six zones, which have characteristic colors and consistencies and are composed of intermittent layers, have been identified along the vertical profile. Live phototrophic bacteria have been found in the three upper zones. The bulk of the cyanobacteria is concentrated in the upper zone. In the lower zones, the development of purple bacteria has been observed. The diurnal dynamics of the vertical distribution of phototrophic microorganisms, which results from variations in the physicochemical environmental parameters, is described. Ectothiorhodospira sp. are dominant among the anoxyphotobacteria present. Their number, determined according to the inoculation method, is 10(6)-10(7) cells/ml. The purple bacteria of the genera Allochromatium, Thiocapsa, and Rhodovulum are also present. Experiments with isolated pure cultures have shown that the anoxygenic photosynthetic bacteria of Lake Khilganta are halotolerant and alkalitolerant or alkaliphilic. In liquid enrichment cultures, at pH 9.5, the ratio of anoxyphotobacteria species is close to that observed in the lake. When the pH is increased to 10.4, it is Ectothiorhodospira, which is the most adapted to life under increased mineralization and alkalinity, that predominantly develops. Photosynthetic activity has been observed in the three upper mat zones and constitutes, on average, 1.5 g C/(m2 h); the share of anoxygenic photosynthesis accounts for 75-95% of the total productivity. The main role in sulfide oxidation belongs to the phototrophic anoxyphotobacteria and cyanobacteria. In terms of the physicochemical conditions and structure of the phototrophic community, Lake Khilganta is similar to shallow saline water bodies of marine origin. The main differences consist in the increased alkalinity and in the consequent prevalence of alkaliphilic and alkalitolerant microorganisms and in the absence of representatives of the neutrophilic group of green sulfur bacteria.  相似文献   

19.
20.
The cyanobacterium Spirulina platensis has been used by humans because of its nutritional and possibly medicinal effects. Our study evaluated the influence of temperature and nitrogen concentration in the medium on the production of biomass by this cyanobacterium and the biomass composition in protein, lipid and phenolic compounds. We found that at 35 degrees C there was a negative effect on biomass production but a positive effect on the production of protein, lipids and phenolics, the highest levels of these compounds being obtained in Zarrouk's medium containing 1.875 or 2.500 g l(-1) sodium nitrate. Higher biomass densities and productivity were obtained at 30 degrees C than at 35 degrees C, but nitrogen concentration appeared to have no effect on the amount of protein, lipid or phenolics, indicating that at 30 degrees C the concentration of sodium nitrate in Zarrouk's medium (2.50 g l(-1)) can be reduced without loss of productivity, an important cost-saving factor in large-scale cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号