首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rapid identification of bacterial pathogens is important for patient management and initiation of appropriate antibiotic therapy in the early stages of infection. Among the several techniques, capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) analysis combined with small subunit rRNA gene-specific polymerase chain reaction (PCR) has come into the spotlight owing to its sensitivity, resolution, and reproducibility. Despite the advantages of the method, the design of PCR primers and optimization of multiplex PCR conditions remain to be studied so that as many pathogens as possible can be analyzed in a single run. Here we describe a novel two-step technique involving multiplex PCR pathogen detection by CE-SSCP analysis followed by singleplex PCR pathogen quantification by CE-SSCP. Specific PCR primers were designed for optimal separation of their products by CE-SSCP based on molecular weight. PCR conditions were then optimized for multiplex analysis of the targets. Subsequently, detected pathogens were quantified by PCR with specific primers. Eight clinically important strains were simultaneously identified under the optimized conditions. Each individual pathogen was then quantified at a level of sensitivity of tens of cells per milliliter. In conclusion, the two-step pathogen detection method based on CE-SSCP described here allows for sensitive detection of pathogens by multiplex PCR (first step) and quantification by specific PCR (second step). The results illustrate the potential of the method in clinical applications.  相似文献   

2.
多重实时荧光PCR检测牛、山羊和绵羊源性成分   总被引:9,自引:0,他引:9  
根据牛、山羊和绵羊线粒体细胞色素b基因序列, 设计特异性引物和以不同荧光素标记的Taqman探针。通过对PCR反应体系和反应条件的优化筛选, 建立能同时鉴别牛、山羊和绵羊源性成分的多重实时荧光PCR方法。采用本文方法与国标GB/T 20190-2006方法分别对17种不同源性动物DNA和200份不同来源样品DNA进行牛羊源性成分检测, 数据显示两者检测结果符合率达100%, 特异性相当。与国标方法相比, 本试验方法不需电泳、酶切和测序, 即可在一个PCR反应中同时鉴别检测牛、山羊和绵羊3种源性成分, 检测效率提高近3倍; 灵敏度更高, 比国标方法灵敏10倍; 适用性更广, 除了饲料, 还适用于肉品、奶品、生皮和动物油脂等动物产品的牛羊源性成分检测。  相似文献   

3.
A DNA macroarray was developed to provide the ability to detect multiple foodborne pathogens in fresh chicken meat. Probes targeted to the 16S rRNA and genus- and species-specific genes, including fimY, ipaH, prfA, and uspA, were selected for the specific detection of Salmonella spp., Shigella spp., Listeria monocytogenes, and Escherichia coli, respectively. The combination of target gene amplification by PCR and a DNA macroarray in our system was able to distinguish all target bacteria from pure cultures with a detection sensitivity of 105 c.f.u. ml?1. The DNA macroarray was also applied to 10 fresh chicken meat samples. The assay validation demonstrated that by combining the enrichment steps for the target bacteria and the DNA macroarray, all 4 target bacteria could be detected simultaneously from the fresh chicken samples. The sensitivity of L. monocytogenes and Shigella boydii detection in the fresh chicken samples was at least 10 and 3 c.f.u. of the initial contamination in 25 g samples, respectively. The advantages of our developed protocol are high accuracy and time reduction when compared to conventional culture. The macroarray developed in our investigation was cost effective compared to modern oligonucleotide microarray techniques because there was no expensive equipment required for the detection of multiple foodborne pathogens.  相似文献   

4.
利用多重PCR检测金黄色葡萄球菌粘附素基因clfa A、clfa B、fnbp A和fnbp B的方法,对奶牛乳腺炎金黄色葡萄球菌临床分离株进行聚集因子主效基因的分析。通过设计合成的特异性引物对金黄色葡萄球菌模板进行PCR扩增,将目的基因回收并连接到T载体,鉴定后进行测序验证,然后对本实验室所分离鉴定的金葡菌临床分离株进行多重PCR检测。PCR产物经过电泳成像显示,clfa A和clfa B分别在292bp和205bp处出现特异性条带;fn-bp A和fnbp B分别在524bp和642bp处出现特异性条带。通过对29株金葡菌临床分离株多重PCR检测发现:能扩增出clfa A、clfa B、fnbp A和fnbp B的分别有26株、12株、28株和3株。建立的多重PCR检测金黄色葡萄球菌粘附素基因的方法具有良好的特异性和可靠性,并且发现clfa A和fnbp A基因存在于绝大部分的金黄色葡萄球菌中。  相似文献   

5.
基因芯片技术检测3种食源性致病微生物方法的建立   总被引:5,自引:0,他引:5  
建立一种运用多重PCR和基因芯片技术检测和鉴定志贺氏菌、沙门氏菌、大肠杆菌O157的方法, 为3种食源性致病菌的快速检测和鉴定提供了准确、快速、灵敏的方法。分别选取编码志贺氏菌侵袭性质粒抗原H基因(ipaH)、沙门氏菌肠毒素(stn)基因和致泻性大肠杆菌O157志贺样毒素(slt)基因设计引物和探针, 进行三重PCR扩增, 产物与含特异性探针的芯片杂交。对7种细菌共26株菌进行芯片检测, 仅3种菌得到阳性扩增结果, 证明此方法具有很高的特异性。3种致病菌基因组DNA和细菌纯培养物的检测灵敏度约为8 pg。对模拟食品样品进行直接检测, 结果与常规细菌学培养结果一致, 检测限为50 CFU/mL。结果表明:所建立的基因芯片检测方法特异性好, 灵敏度高, 为食源性致病菌的检测提供了理想手段, 有良好的应用前景。  相似文献   

6.
Based on the recently completed genomic sequence of Chromobacterium violaceum American Type Culture Collection (ATCC) 12472 a multiplex PCR assay targeting the prgI, spaO, invG, and sipB genes of the Salmonella SPI-1 homologue type-III secretion system was developed. PCR products of 255bp (prgI), 749bp (spaO), 1685bp (invG), and 1752bp (sipB) were successfully amplified simultaneously in a single reaction with all Chr. violaceum strains investigated whereas other bacteria tested negative. The detection limit for pure cultures in multiplex PCR analysis was 100CFU. The developed assay significantly improves rapid identification of Chr. violaceum and allows its differentiation from closely related organisms.  相似文献   

7.
Raw cured and ripened meat products have been traditionally manufactured using the fermentation of native or added carbohydrates by lactic acid bacteria found in meat or in its environment. The commercial application of probiotic microorganisms in dry fermented meat products is not yet common. Probiotic bacterial strains that can be used in the manufacturing of dry fermented meat products should be capable of surviving in conditions found in fermented products; furthermore, they should dominate other microorganisms found in the finished product. The initial number of microorganisms in sausage filling or on the surface of ham or loin cannot be reduced as in milk pasteurization, for example. Therefore, the choice of appropriate microorganisms is important. Probiotic meat products are a relatively new and not very well recognized field of meat industry, but the most important issue is to find a compromise between technological aspects, safety, quality and health-beneficial effects of food. Therefore, the object of this review is on the one hand to analyze technological possibilities and quality parameters of probiotic meat products, and on the other hand to discuss risks and benefits of probiotic meat used in human nutrition.  相似文献   

8.
Three pathogens, Campylobacter, Salmonella, and Shiga-toxin-producing Escherichia coli, are leading causes of bacterial gastroenteritis in the United States and worldwide. Although these three bacteria are typically considered food-borne pathogens, outbreaks have been reported due to contaminated drinking water and irrigation water. The aim of this research was to develop two types of PCR assays that could detect and quantify three pathogens, Campylobacter spp., E. coli O157:H7, and Salmonella spp., in watershed samples. In conventional PCR, three target strains were detected by multiplex PCR (m-PCR) using each specific primer pair simultaneously. Under optimized m-PCR conditions, the assay produced a 90-bp product for Campylobacter jejuni, a 150-bp product for E. coli O157:H7, and a 262-bp product for Salmonella Typhimurium, and the limitation of detection was approximately 700 copies for all three bacteria. In addition, real-time PCR was performed to quantify the three pathogens using SYBR green fluorescence. The assay was designed so that each target had a different melting temperature [C. jejuni (80.1 °C), E. coli O157:H7 (83.3 °C), and S. Typhimurium (85.9 °C)]. Therefore, this system could quantify and distinguish three pathogens simultaneously in a single reaction.  相似文献   

9.
Recent outbreaks of listeriosis have emphasized the urgent need for rapid and reliable detection methods for Listeria spp., especially in food. Haemolysin production is a major factor in the pathogenesis of listeriosis and the polymerase chain reaction (PCR) was used to amplify two specific DNA fragments of the alpha- and the beta-haemolysin genes. The amplification system specifically recognized L. monocytogenes strains. The detection limit determined with pure cultures was 10 bacteria when estimated with alpha-haemolysin primers. In the analysis of 50 samples of cooked sausage products, bacterial colonies suspected to be Listeria spp. were isolated by conventional methods from six samples. PCR analysis identified three of six as L. monocytogenes. Subsequent serotyping showed perfect agreement with the PCR results. Since enrichment is the most time consuming step in conventional methods a PCR procedure which allows the direct detection of L. monocytogenes in milk was developed. Pasteurized milk was artificially contaminated with various levels of L. monocytogenes. The detection limit was determined to be 10 bacteria/10 ml milk and direct detection and identification of L. monocytogenes took less than two working days. These results show that this haemolysin gene amplification system is very rapid and reliable and therefore avoids cumbersome and lengthy cultivation steps.  相似文献   

10.
Microarray analysis of microbial virulence factors.   总被引:40,自引:0,他引:40  
Hybridization with oligonucleotide microchips (microarrays) was used for discrimination among strains of Escherichia coli and other pathogenic enteric bacteria harboring various virulence factors. Oligonucleotide microchips are miniature arrays of gene-specific oligonucleotide probes immobilized on a glass surface. The combination of this technique with the amplification of genetic material by PCR is a powerful tool for the detection of and simultaneous discrimination among food-borne human pathogens. The presence of six genes (eaeA, slt-I, slt-II, fliC, rfbE, and ipaH) encoding bacterial antigenic determinants and virulence factors of bacterial strains was monitored by multiplex PCR followed by hybridization of the denatured PCR product to the gene-specific oligonucleotides on the microchip. The assay was able to detect these virulence factors in 15 Salmonella, Shigella, and E. coli strains. The results of the chip analysis were confirmed by hybridization of radiolabeled gene-specific probes to genomic DNA from bacterial colonies. In contrast, gel electrophoretic analysis of the multiplex PCR products used for the microarray analysis produced ambiguous results due to the presence of unexpected and uncharacterized bands. Our results suggest that microarray analysis of microbial virulence factors might be very useful for automated identification and characterization of bacterial pathogens.  相似文献   

11.
PCR techniques have significantly improved the detection and identification of bacterial pathogens. Countless adaptations and applications have been described, including quantitative PCR and the latest innovation, real-time PCR. In real-time PCR, e.g., the 5'-nuclease chemistry renders the automated and direct detection and quantification of PCR products possible (P. M. Holland et al., Proc. Natl. Acad. Sci. USA 88:7276-7280, 1991). We present an assay for the quantitative detection of Listeria monocytogenes based on the 5'-nuclease PCR using a 113-bp amplicon from the listeriolysin O gene (hlyA) as the target. The assay was positive for all isolates of L. monocytogenes tested (65 isolates including the type strain) and negative for all other Listeria strains (16 isolates from five species tested) and several other bacteria (18 species tested). The application of 5'-nuclease PCR in diagnostics requires a quantitative sample preparation step. Several magnetic bead-based strategies were evaluated, since these systems are simple and relatively easy to automate. The combination of nonspecific binding of bacteria to paramagnetic beads, with subsequent DNA purification by use of the same beads, gave the most satisfactory result. The detection limit was approximately 6 to 60 CFU, quantification was linear over at least 7 log units, and the method could be completed within 3 h. In conclusion, a complete quantitative method for L. monocytogenes in water and in skimmed and raw milk was developed.  相似文献   

12.
Oscypek is a traditional Polish scalded-smoked cheese, with a protected-designation-of-origin (PDO) status, manufactured from raw sheep's milk without starter cultures in the Tatra Mountains region of Poland. This study was undertaken in order to gain insight into the microbiota that develops and evolves during the manufacture and ripening stages of Oscypek. To this end, we made use of both culturing and the culture-independent methods of PCR followed by denaturing gradient gel electrophoresis (PCR-DGGE) and pyrosequencing of 16S rRNA gene amplicons. The culture-dependent technique and PCR-DGGE fingerprinting detected the predominant microorganisms in traditional Oscypek, whereas the next-generation sequencing technique (454 pyrosequencing) revealed greater bacterial diversity. Besides members of the most abundant bacterial genera in dairy products, e.g., Lactococcus, Lactobacillus, Leuconostoc, Streptococcus, and Enterococcus, identified by all three methods, other, subdominant bacteria belonging to the families Bifidobacteriaceae and Moraxellaceae (mostly Enhydrobacter), as well as various minor bacteria, were identified by pyrosequencing. The presence of bifidobacterial sequences in a cheese system is reported for the first time. In addition to bacteria, a great diversity of yeast species was demonstrated in Oscypek by the PCR-DGGE method. Culturing methods enabled the determination of a number of viable microorganisms from different microbial groups and their isolation for potential future applications in specific cheese starter cultures.  相似文献   

13.
Recent outbreaks of listeriosis have emphasized the urgent need for rapid and reliable detection methods for Listeria spp., especially in food. Haemolysin production is a major factor in the pathogenesis of listeriosis and the polymerase chain reaction (PCR) was used to amplify two specific DNA fragments of the α- and the β-haemolysin genes. The amplification system specifically recognized L. monocytogenes strains. The detection limit determined with pure cultures was 10 bacteria when estimated with α-haemolysin primers. In the analysis of 50 samples of cooked sausage products, bacterial colonies suspected to be Listeria spp. were isolated by conventional methods from six samples. PCR analysis identified three of six as L. monocytogenes. Subsequent serotyping showed perfect agreement with the PCR results. Since enrichment is the most time consuming step in conventional methods a PCR procedure which allows the direct detection of L. monocytogenes in milk was developed. Pasteurized milk was artificially contaminated with various levels of L. monocytogenes. The detection limit was determined to be 10 bacteria/10 ml milk and direct detection and identification of L. monocytogenes took less than two working days. These results show that this haemolysin gene amplification system is very rapid and reliable and therefore avoids cumbersome and lengthy cultivation steps.  相似文献   

14.
The objective of the present study was to establish a system of real-time polymerase chain reactions (PCRs) for the specific detection of Yersinia pestis using the LightCycler (LC) instrument. Twenty-five strains of Y. pestis, 94 strains of other Yersinia species and 33 clinically relevant bacteria were investigated. Assays for the 16S rRNA gene target and the plasminogen activator gene (resides on the 9.5-kb plasmid) and for the Y. pestis murine toxin gene and the fraction 1 antigen gene (both on the 100-kb plasmid) were combined for the use in two multiplex assays including an internal amplification control detecting bacteriophage lambda-DNA. Applying these multiplex assays, Y. pestis was selectively identified; other bacteria yielded no amplification products. The lower limit of detection was approximately 0.1 genome equivalent. Rat or flea DNA had no inhibitory effects on the detection of Y. pestis. The results obtained using the multiplex real-time assays showed 100% accuracy when compared with combinations of conventional PCR assays. We developed and evaluated a highly specific real-time PCR strategy for the detection of Y. pestis, obtaining results within 3 h including DNA preparation.  相似文献   

15.
PCR techniques have significantly improved the detection and identification of bacterial pathogens. Countless adaptations and applications have been described, including quantitative PCR and the latest innovation, real-time PCR. In real-time PCR, e.g., the 5′-nuclease chemistry renders the automated and direct detection and quantification of PCR products possible (P. M. Holland et al., Proc. Natl. Acad. Sci. USA 88:7276–7280, 1991). We present an assay for the quantitative detection of Listeria monocytogenes based on the 5′-nuclease PCR using a 113-bp amplicon from the listeriolysin O gene (hlyA) as the target. The assay was positive for all isolates of L. monocytogenes tested (65 isolates including the type strain) and negative for all other Listeria strains (16 isolates from five species tested) and several other bacteria (18 species tested). The application of 5′-nuclease PCR in diagnostics requires a quantitative sample preparation step. Several magnetic bead-based strategies were evaluated, since these systems are simple and relatively easy to automate. The combination of nonspecific binding of bacteria to paramagnetic beads, with subsequent DNA purification by use of the same beads, gave the most satisfactory result. The detection limit was approximately 6 to 60 CFU, quantification was linear over at least 7 log units, and the method could be completed within 3 h. In conclusion, a complete quantitative method for L. monocytogenes in water and in skimmed and raw milk was developed.  相似文献   

16.
Microarray Analysis of Microbial Virulence Factors   总被引:14,自引:6,他引:8       下载免费PDF全文
Hybridization with oligonucleotide microchips (microarrays) was used for discrimination among strains of Escherichia coli and other pathogenic enteric bacteria harboring various virulence factors. Oligonucleotide microchips are miniature arrays of gene-specific oligonucleotide probes immobilized on a glass surface. The combination of this technique with the amplification of genetic material by PCR is a powerful tool for the detection of and simultaneous discrimination among food-borne human pathogens. The presence of six genes (eaeA, slt-I, slt-II, fliC, rfbE, and ipaH) encoding bacterial antigenic determinants and virulence factors of bacterial strains was monitored by multiplex PCR followed by hybridization of the denatured PCR product to the gene-specific oligonucleotides on the microchip. The assay was able to detect these virulence factors in 15 Salmonella, Shigella, and E. coli strains. The results of the chip analysis were confirmed by hybridization of radiolabeled gene-specific probes to genomic DNA from bacterial colonies. In contrast, gel electrophoretic analysis of the multiplex PCR products used for the microarray analysis produced ambiguous results due to the presence of unexpected and uncharacterized bands. Our results suggest that microarray analysis of microbial virulence factors might be very useful for automated identification and characterization of bacterial pathogens.  相似文献   

17.
AIMS: To develop a multiplex PCR approach for simultaneous detection of Leuconostoc and Carnobacterium and its validation in meat products. METHODS AND RESULTS: Two multiplex PCR assays were developed using newly designed 16S rDNA-directed primers adapted to the current taxonomic situation of genera Leuconostoc and Carnobacterium that allow: (i) simultaneous detection of both genera, and members of the nonmotile species of genus Carnobacterium and (ii) identification in a single assay of the nonmotile species C. divergens, C. maltaromicum and C. gallinarum. Sensitivity values of 10(3) and 10(4) CFU g(-1) were determined for multiplex PCR detection of Carnobacterium and Leuconostoc, respectively, following artificially inoculated meat trials. In addition, both multiplex PCR assays were validated in 14 naturally contaminated samples covering nine types of meat products. Results obtained by colony identification were confirmed by PCR detection. CONCLUSIONS: The methods described in this study provide a rapid and reliable tool for PCR detection of Carnobacterium and Leuconostoc, in meat products, and for colony identification. SIGNIFICANCE AND IMPACT OF THE STUDY: This multiplex PCR approach will help in the analysis of the spoilage microbiota of refrigerated vacuum-packaged meat product in order to determine the appropriate preservation method.  相似文献   

18.
基因芯片技术检测3种肠道病原微生物方法的建立   总被引:2,自引:0,他引:2  
目的:建立一种运用多重PCR和基因芯片技术检测和鉴定伤寒沙门氏菌、痢疾杆菌和单核细胞增生利斯特菌的方法。方法:分别选取伤寒沙门氏菌染色体ViaB区域中编码调控Vi抗原表达的基因(vipR)、痢疾杆菌编码侵袭质粒抗原H基因(ipaH)和单核细胞增生利斯特菌溶血素基因(hlyA)设计引物和探针,探针3'端进行氨基修饰,下游引物标记荧光素Cy3。在优化的PCR和杂交反应条件下,进行三重PCR扩增,产物与包括3种致病菌特异性探针的基因芯片杂交。在评价基因芯片的特异性和灵敏度之后,对临床样本进行检测。结果:只有3种目的致病菌的PCR产物在相应探针位置出现特异性信号,其他阴性细菌均无信号出现;3种致病菌的检测灵敏度均可达到103CFU/mL;检测30例临床样本的结果与常规细菌学培养结果一致。结论:所建立的可同时检测伤寒沙门氏菌、痢疾杆菌和单核细胞增生利斯特菌的基因芯片方法快速、准确,特异性高,重复性好,为3种肠道致病菌的快速检测和鉴定提供了新方法和新思路。  相似文献   

19.
This protocol describes a single nucleotide polymorphism (SNP) genotyping strategy for highly degraded DNA, using a two-stage multiplex whereby multiple fragments are first amplified in a single exponential reaction and the products of this PCR are added to a linear single-base-extension reaction. It utilizes the analytical power of a capillary electrophoresis system to simultaneously type all the target sites. The protocol is specifically written for use with severely fragmented templates, typical of ancient DNA, and can be adapted to widely used detection platforms. The addition of the single-phase genotyping step avoids the need for the re-amplification and cloning of PCR products, while providing its own controls for the detection of contamination and allelic drop-out. This protocol can facilitate the routine analysis of up to 52 SNP markers (haploid or diploid) in 96 samples in a single day, and is recommended for the authentication of data in all areas of DNA research (population and medical genetics, forensics, ancient DNA).  相似文献   

20.
Enterotoxigenic Escherichia coli (ETEC) may produce heat-labile toxin (LT) I and LTII and heat-stable toxin (ST) I and STII, while shiga toxin producing E. coli (STEC) strains, including enterohaemorrhagic E. coli (EHEC), may produce shiga-like toxin (SLT) I and/or SLTII. Both ETEC and STEC are pathogenic to humans, pigs and cattle. As contamination of environmental water by any of these pathogenic E. coli cells is possible, a multiplex polymerase chain reaction (PCR) system for the rapid screening of LTI, STII, and SLTI and SLTII genes of E. coli was developed. The PCR primers used were the SLTI and SLTII genes specific primers developed by the present authors and the LTI and STII genes specific primers reported by other laboratories. The detection specificity of this multiplex PCR system was confirmed by PCR assay of ETEC, STEC and other E. coli cells as well as non- E. coli bacteria. Its detection limit was 102–103 cfu each of the target cells per assay. When this multiplex PCR system was used for the rapid screening of LTI, STII ETEC and STEC in water samples such as tap, underground and lake waters, it was found that after the enrichment step, as few as 100 cells 100 ml−1 of the water sample could be detected. Therefore, this PCR system could be used for the rapid monitoring of ETEC and/or STEC cells contaminating water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号