首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thymic microenvironment plays an important role in the development of T cells. A decrease of thymic epithelial cells is the main cause of age-related thymic atrophy or degeneration. Resveratrol (RSV), a phytoalexin produced from plants, has been shown to inhibit the adverse effects of dietary obesity on the structure and function of the thymus. D-Galactose (D-gal) can induce accelerated aging in mice. In the present study, young mice (2 months old) were injected with D-gal (120 mg/kg/day) for 8 consecutive weeks to construct an accelerated aging model. Compared with normal control mice, the thymus epithelium of the D-gal treated mice had structural changes, the number of senescent cells increased, the number of CD4+ T cells decreased, and CD8+ T cells increased. After RSV administration by gavage for 6 weeks, it was found that RSV improved the surface phenotypes of D-gal treated mice, and recovered thymus function by maintaining the ratio of CD4+ to CD8+ cells. It also indicated that RSV enhanced the cell proliferation and inhibited cell senescence. Increased autoimmune regulator (Aire) expression was present in the RSV treated mice. The lymphotoxin-beta receptor (LTβR) expression also increased. These findings suggested that RSV intake could restore the alterations caused by D-gal treatment in the thymus via stimulation of Aire expression.  相似文献   

2.
Tolerance to tissue-engineering products is a major obstacle hindering the clinical application of this rapidly advancing technology. Manipulation of central tolerance, by establishing thymus chimerism of both donor and host-derived haemopoietic cells (haemopoietic stem cell transplant--HSCT), should purge any T cells reactive to potential donor organ or tissue transplant. A functional thymus, however, is required to induce chimerism and repopulate the peripheral T cell pool, but age-related thymic atrophy and damage caused by ablative conditioning regimes significantly reduce thymic function and increase incident of infection-dependent morbidity and mortality. Thus rejuvenation of the thymus alongside HSCT may potentiate the use of this strategy in the clinic. In addition, the use of thymic epithelial progenitor cell technology may allow growth of ex vivo thymic tissue for use in clinical situations of immunodeficiency as well as in establishing tolerance to tissue/organ products derived from the same source.  相似文献   

3.
Our studies on the capacity of bone marrow (BM) to generate T lymphocytes in aging have revealed that under the competitive conditions of thymic reconstitution, cells of aged mice are significantly inferior to those of the young. The present study was designed to further investigate the basis of this age-related change. Two mechanisms were considered: (a) The potential of BM-derived T cell precursors from aged mice to proliferate and differentiate in the thymic microenvironment is impaired. (b) The frequency of T cell precursors is reduced in BM of aged mice, thus affecting their ability to compete efficiently in reconstituting the thymus. These possibilities were studied in vitro by colonizing thymocyte-depleted fetal thymic lobes with BM cells from aged (24-month) and young (3-month) C57BL/6 mice. By determining the cell cycle duration of BM-derived cells which have seeded the thymic lobes, we found that cells originating from aged mice proliferate in the thymus at the same rate as those from young mice. Reconstitution with limiting numbers of BM cells indicated that the frequency of thymic progenitors in the BM is significantly reduced in aged as compared to young mice. We thus conclude that aging is associated with a quantitative reduction in the frequency of thymic progenitors in the BM.  相似文献   

4.
The stromal cells of the thymus of sham-irradiated and sublethal fission neutron-irradiated CBA/H mice were analyzed with immunohistology, using monoclonal antibodies directed to I-A and H-2K antigens as well as specific determinants for cortical and medullary stromal elements. In the control thymuses, I-A expression in the thymus shows a reticular staining pattern in the cortex and a confluent staining pattern in the medulla. In contrast, H-2K expression is mainly confluently located in the medulla. Whole body irradiation with 2.5 Gy fission neutrons reduces within 24 hr the cortex to a rim of vacuolized "nurse cell-like" epithelial cells, largely depleted of lymphoid cells. The localization of I-A antigens changes in the cortex and I-A determinants are no longer associated with or localized on epithelial reticular cells. Medullary stromal cells, however, are more or less unaffected. A high rate of phagocytosis is observed during the first 3 days after irradiation. About 5 days after irradiation, the thymus becomes highly vascularized and lymphoid cells repopulate the cortex. The repopulation of the thymic cortex coincides with the appearance of a bright H-2K expression in the cortex which is associated with both stromal cells as well as lymphoid blasts. During the regeneration of the thymus, the thymic stromal architecture is restored before the expression of cell surface-associated reticular MHC staining patterns. The observed sequential changes in the thymic microenvironment are related to the lymphoid repopulation of the thymus.  相似文献   

5.
The nerve growth factor (NGF) receptors p75LNGR and TrkA are expressed by thymic epithelial cells. Presumably, the NGF-TrkA system is involved in the paracrine communication between thymic epithelial cells and thymocytes, whereas the functional role of p75LNGR is still unknown. The thymus of vertebrates undergoes age-related changes that in part depend on hormonal factors. In order to find out whether thymic epithelial cells are responsive to NGF during the whole lifespan of the rat, we studied NGF receptor expression in the thymus from birth to 2 years of age, using immunohistochemistry. Furthermore, to evaluate whether increased plasma levels of NGF affected the ageing process, either NGF or 4-methylcatechol (4MC), an inductor of NGF synthesis, was administered. Both TrkA and p75LNGR were expressed by a subpopulation of thymic epithelial cells during the whole age range studied and their expression peaked at around 3 months. TrkA was primarily found in subcortical and medullary epithelial cells, whereas p75LNGR was seen in a subpopulation of medullary cells. Cortical epithelial cells, neural crest-derived cells, other stromal cells and thymocytes were not immunoreactive for NGF receptors. Neither the administration of NGF nor the increased NGF plasma levels obtained after 4MC treatment seemed to affect the ageing of the thymus as assessed by morphological and immunohistochemical criteria, but this increase in NGF levels did produce a shift in the expression of p75LNGR from epithelial cells to ED1-positive macrophages in animals of 6 months and older. Present results indicate that the expression of p75LNGR and TrkA in the rat thymus undergoes age-dependent changes that parallel those of epithelial cells. NGF could therefore be important for thymus homeostasis, possibly acting on epithelial cells. Nevertheless, NGF did not seem to be able to prevent the involution of this organ, although it produced a switch in the expression of p75LNGR, the significance of which remains to be established.  相似文献   

6.
A brief overview of the area of T cell aging is presented by first discussing the age-related changes in T cell activities, and then by focusing attention on the possible mechanisms that may be responsible for the decline. Present evidence indicates that thymic involution precedes and therefore may be responsible for the age-dependent decline in the ability of the immune system to generate functional T cells. At this time, it appears that the primary effect of thymic involution is on a T cell differentiation pathway affecting the more mature T cells first with time, and then the less mature T cells. Thus, the thymus may be the aging clock for the immune system. Further studies should be centered around processes regulating growth and atrophy of the thymus.  相似文献   

7.
Age-related deterioration in immune function has been recognized in many species. In humans the clinical manifestation of such immune dysfunction is age-related increases in the susceptibility to certain infections and in the incidence of some autoimmune disease and certain cancers. Laboratory investigations reveal age-related changes in the peripheral T cell pool, in the predominant phenotype, cytokine production profiles, signalling function and in replicative ability following stimulus with antigen, mitogens or anti-CD3 antibody. These changes in the properties of peripheral T cells are thought to be causally linked to an age-associated involution in the thymus. Our analysis reveals that thymic involution is due to a change in the thymic microenvironment linked to a reduction in the level of available interleukin 7. Treatment with interleukin 7 leads to a reversal of thymic atrophy with increased thymopoiesis. This provides the potential to reverse the immune dysfunction seen in the peripheral T cell pool by replacing old cells with new output generated in the thymus. Problems to overcome in order for such an experimental therapy to be successful require careful analysis in order to provide an optimal strategy to ensure that new T cell emigrants from the thymus have a broad range of specificities and are able to enter the peripheral T cell pool.  相似文献   

8.
Zhu X  Gui J  Dohkan J  Cheng L  Barnes PF  Su DM 《Aging cell》2007,6(5):663-672
It has been speculated that aging lymphohematopoietic progenitor cells (LPC) including hematopoietic stem cells (HSC) and early T-cell progenitors (ETP) have intrinsic defects that trigger age-related thymic involution. However, using a different approach, we suggest that that is not the case. We provided a young thymic microenvironment to aged mice by transplanting a fetal thymus into the kidney capsule of aged animals, and demonstrated that old mouse-derived LPCs could re-establish normal thymic lymphopoiesis and all thymocyte subpopulations, including ETPs, double negative subsets, double positive, and CD4(+) and CD8(+) single positive T cells. LPCs derived from aged mice could turn over young RAG(-/-) thymic architecture by interactions, as well as elevate percentage of peripheral CD4(+)IL-2(+) T cells in response to costimulator in aged mice. Conversely, intrathymic injection of ETPs sorted from young animals into old mice did not restore normal thymic lymphopoiesis, implying that a shortage and/or defect of ETPs in aged thymus do not account for age-related thymic involution. Together, our findings suggest that the underlying cause of age-related thymic involution results primarily from changes in the thymic microenvironment, causing extrinsic, rather than intrinsic, defects in T-lymphocyte progenitors.  相似文献   

9.
The thymus is a vital organ for T lymphocyte development. Of thymic stromal cells, thymic epithelial cells (TECs) are particularly crucial at multiple stages of T cell development: T cell commitment, positive selection and negative selection. However, the function of TECs in the thymus remains incompletely understood. In the article, we provide a method to isolate TEC subsets from fresh mouse thymus using a combination of mechanical disruption and enzymatic digestion. The method allows thymic stromal cells and thymocytes to be efficiently released from cell-cell and cell-extracellular matrix connections and to form a single-cell suspension. Using the isolated cells, multiparameter flow cytometry can be applied to identification and characterization of TECs and dendritic cells. Because TECs are a rare cell population in the thymus, we also describe an effective way to enrich and purify TECs by depleting thymocytes, the most abundant cell type in the thymus. Following the enrichment, cell sorting time can be decreased so that loss of cell viability can be minimized during purification of TECs. Purified cells are suitable for various downstream analyses like Real Time-PCR, Western blot and gene expression profiling. The protocol will promote research of TEC function and as well as the development of in vitro T cell reconstitution.  相似文献   

10.
With the exception of Agnatha, fish possess the functional equivalent of the thymus gland found in higher vertebrates. As in other vertebrates, this gland originates from the pharyngeal pouches and ontogenically is the first lymphoid organ to be infiltrated with lymphoid cells. Histology of the structure may differ from one species to another but the cellular component is basically similar. The (paired) gland is surrounded by an epithelial capsule. Within the gland a framework of reticulo-epithelial cells supports the lymphocytes. The age-related involution process, which characterizes the thymus of higher vertebrates, does not necessarily occur in fish. Nevertheless, thymus growth and function may be modulated by those factors that induce its involution such as aging, season, sexual maturity, and stress. The major role played by the thymus in the immune response of higher vertebrates is presumed to occur in fish. Thymus-derived cell dependent immune reactions have been demonstrated in fish. The cells that mediate these functions are designated as T-like cells. So far, cell surface markers equivalent to those of mammalian T lymphocytes have not been characterized. The T lymphocyte specificities are supposed to be acquired within or via the thymic microenvironment. Unfortunately, there is limited data concerned with the cytological and physiological basis of the maturation of thymus-derived cells. Direct involvement of the fish thymus in defense mechanisms has not been investigated extensively. The gland appears to be weakly protected because of its superficial location and is easily exposed to pathogens. Neoplasia is the main pathologic condition reported in the thymus of fish, with little else having been published regarding thymic pathology.  相似文献   

11.
Architectural changes in the thymus of aging mice   总被引:1,自引:0,他引:1  
Age-associated thymic involution is one of the most dramatic and ubiquitous changes in the immune system, although the precise mechanisms involved still remain obscured. Several hypotheses have been proposed incorporating extrinsic and intrinsic factors, however, changes in the thymic microenvironment itself is one of the least investigated. We therefore decided to undertake a detailed histological examination of the aging thymus in order to elucidate possible mechanisms of thymic atrophy. This investigation provides insight into the changes within the murine thymus with age, demonstrating a new approach to quantify protein expressional differences while preserving the thymic architecture. There is a decline in expression of thymic epithelial cell-specific makers and an increase in fibroblast content in the aging mouse thymus. This is concurrent with a disorganization of the thymic compartments, a morphological transformation within the epithelial cells and alterations of their archetypal staining patterns. Furthermore, this is linked to a rise in apoptotic cells and the novel finding of increased senescence in the thymus of older mice that appears to be colocalized in the epithelial compartment. These changes within the thymic epithelial cells may be in part accountable for thymic atrophy and responsible for the decline in T-cell output.  相似文献   

12.
The three-dimensional microarchitecture of the thymus plays a unique role in directing T cell lineage commitment and development. This is supported by the fact that, in contrast to fetal thymic organ cultures, thymic stromal cell monolayer cultures (TSMC) fail to support T lymphopoiesis. Nevertheless, OP9-DL1 cell monolayer cultures induce T lineage commitment and differentiation. Thus, the inability of TSMC to support T lymphopoiesis may be due to a loss of Notch ligand expression and/or function during culture. In this study, we report that, in contrast to fetal thymic organ cultures, TSMC fail to maintain expression of the Notch ligands, Delta-like (Dll) 1 and Dll4, and concomitantly lose the ability to support T lymphopoiesis. Importantly, ectopic re-expression of Dll1 or Dll4 is sufficient to restore the ability of TSMC to support T lymphopoiesis. These findings demonstrate that maintenance of endogenous Dll1 or Dll4 expression by thymic stromal cells is required for the commitment and differentiation of T cells in the absence of a three-dimensional microenvironment.  相似文献   

13.
The thymus represents the primary site for T cell lymphopoiesis, providing a coordinated set for critical factors to induce and support lineage commitment, differentiation and survival of thymus-seeding cells. One irrefutable fact is that the presence of non-lymphoid cells through the thymic parenchyma serves to provide coordinated migration and differentiation of T lymphocytes. Moreover, the link between foetal development and normal anatomy has been stressed in this review. Regarding thymic embryology, its epithelium is derived from the embryonic endodermal layer, with possible contributions from the ectoderm. A series of differentiating steps is essential, each of which must be completed in order to provide the optimum environment for thymic development and function. The second part of this article is focused on thymic T-cell development and differentiation, which is a stepwise process, mediated by a variety of stromal cells in different regions of the organ. It depends strongly on the thymic microenvironment, a cellular network formed by epithelial cells, macrophages, dendritic cells and fibroblasts, that provide the combination of cellular interactions, cytokines and chemokines to induce thymocyte precursors for the generation of functional T cells. The mediators of this process are not well defined but it has been demonstrated that some interactions are under neuroendocrine control. Moreover, some studies pointed out that reciprocal signals from developing T cells also are essential for establishment and maintenance of the thymic microenvironment. Finally, we have also highlighted the heterogeneity of the lymphoid, non-lymphoid components and the multi-phasic steps of thymic differentiation. In conclusion, this review contributes to an understanding of the complex mechanisms in which the foetal and postnatal thymus is involved. This could be a prerequisite for developing new therapies specifically aimed to overcome immunological defects, linked or not-linked to aging.  相似文献   

14.
ChT1, an Ig superfamily molecule required for T cell differentiation   总被引:1,自引:0,他引:1  
The thymus is colonized by circulating progenitor cells that differentiate into mature T cells under the influence of the thymic microenvironment. We report here the cloning and function of the avian thymocyte Ag ChT1, a member of the Ig superfamily with one V-like and one C2-like domain. ChT1-positive embryonic bone marrow cells coexpressing c-kit give rise to mature T cells upon intrathymic cell transfer. ChT1-specific Ab inhibits T cell differentiation in embryonic thymic organ cultures and in thymocyte precursor cocultures on stromal cells. Thus, we provide clear evidence that ChT1 is a novel Ag on early T cell progenitors that plays an important role in the early stages of T cell development.  相似文献   

15.
欧越  周佩佩  王娟  刘翔  刘莉 《生物工程学报》2021,37(11):3945-3960
胸腺是人体重要的免疫器官,是T细胞分化成熟的场所,受损后容易引发自身免疫性疾病甚至恶性肿瘤。多年来,研究人员主要通过T细胞体外单层培养系统探索T细胞的发育过程,揭示胸腺损伤和再生的机制。但单层培养系统既不能重现胸腺独特的三维上皮性网状结构,也无法充分提供造血干细胞定向分化为T细胞所需的细胞因子和生长因子。胸腺类器官技术利用具有干细胞潜能的细胞,在体外通过三维培养模拟胸腺的解剖结构和胸腺上皮细胞介导的信号通路,与体内胸腺微环境十分接近。在研究T细胞分化和发育、胸腺相关疾病、重建机体免疫功能以及细胞治疗等方面,胸腺类器官呈现出巨大潜力。文中系统介绍了胸腺类器官的培养方法,比较了培养所用支架的优缺点;同时探讨了胸腺类器官在疾病建模、肿瘤靶向治疗、再生医学和器官移植等领域的应用,并对其前景进行展望。  相似文献   

16.
17.
Cellular architectural proteins often participate in organ development and maintenance. Although functional decay of some of these proteins during aging is known, the cell‐type‐specific developmental role and the cause and consequence of their subsequent decay remain to be established especially in mammals. By studying lamins, the nuclear structural proteins, we demonstrate that lamin‐B1 functions specifically in the thymic epithelial cells (TECs) for proper thymus organogenesis. An up‐regulation of proinflammatory cytokines in the intra‐thymic myeloid immune cells during aging accompanies a gradual reduction of lamin‐B1 in adult TECs. We show that these cytokines can cause senescence and lamin‐B1 reduction of the young adult TECs. Lamin‐B1 supports the expression of TEC genes that can help maintain the adult TEC subtypes we identified by single‐cell RNA‐sequencing, thymic architecture, and function. Thus, structural proteins involved in organ building and maintenance can undergo inflammation‐driven decay which can in turn contribute to age‐associated organ degeneration.  相似文献   

18.
We have isolated a full-length cDNA clone (thymic stromal origin (TSO)-1C12) from a SCID thymus library using a probe from a PCR-based subtractive library enriched for sequences from fetal thymic stromal cells. TSO-1C12 mRNA is expressed mainly in the thymic cortex and is highly enriched in SCID thymus. Expression per cell is highest during fetal thymus development and decreases after day 16. Antipeptide Abs immunoprecipitated a hydrophobic, plasma membrane glycoprotein (thymic stromal cotransporter, TSCOT) whose translated sequence has weak homology to bacterial antiporters and mammalian cation cotransporters with 12 transmembrane domains. TSCOT represents a new member of this superfamily that is highly expressed in thymic cortical epithelial cells.  相似文献   

19.
This paper describes in vitro and in vivo attempts to deplete the 4- to 8-month-old Xenopus laevis (J strain) thymus of its lymphocyte compartment. Gamma irradiation (2-3000 rad) of the excised thymus, followed by two weeks in organ culture, is effective in removing lymphocytes, but causes drastic reduction in size and loss of normal architecture. In contrast, in vivo whole-body irradiation (3000 rad) and subsequent in situ residence for 8-14 days proves successful in providing a lymphocyte-depleted froglet thymus without loss of cortical and medullary zones. In vivo-irradiated thymuses are about half normal size, lack cortical lymphocytes, but still retain some medullary thymocytes; they show no signs of lymphocyte regeneration when subsequently organ cultured for 2 weeks. Light microscopy of 1 micron, plastic-embedded sections and electron microscopy reveal that a range of thymic stromal cell types are retained and that increased numbers of cysts, mucous and myoid cells are found in the thymus following whole-body irradiation. In vivo-irradiated thymuses are therefore suitable for implantation studies exploring the role of thymic stromal cells in tolerance induction of differentiating T lymphocytes.  相似文献   

20.
The generation of a peripheral T-cell pool is essential for normal immune system function. CD4+ and CD8+ T cells are produced most efficiently in the thymus, which provides a complexity of discrete cellular microenvironments. Specialized stromal cells, that make up such microenvironments, influence each stage in the maturation programme of immature T-cell precursors. Progress has recently been made in elucidating events that regulate the development of intrathymic microenvironments, as well as mechanisms of thymocyte differentiation. It is becoming increasingly clear that the generation and maintenance of thymic environments that are capable of supporting efficient T-cell development, requires complex interplay between lymphoid and stromal compartments of the thymus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号