首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intercellular adhesion molecule-1 (ICAM-1, CD54) is one of three putative endothelial receptors that mediate in vitro cytoadherence of P. falciparum-infected erythrocytes. Since cytoadherence to postcapillary venular endothelium is thought to be a major factor in the virulence of P. falciparum malaria, we have examined the interaction between ICAM-1 and the P. falciparum-infected cell, and have compared it with the interaction to the physiological counter receptor, the leukocyte integrin LFA-1. Our results demonstrate that the malaria-binding site resides in the first two domains of the ICAM-1 molecule and overlaps, but is distinct from, the LFA-1 site.  相似文献   

2.
BACKGROUND: Chondroitin-4-sulfate (CSA) was recently described as a Plasmodium falciparum cytoadherence receptor present on Saimiri brain microvascular and human lung endothelial cells. MATERIALS AND METHODS: To specifically study chondroitin-4-sulfate-mediated cytoadherence, a parasite population was selected through panning of the Palo-Alto (FUP) 1 P. falciparum isolate on monolayers of Saimiri brain microvascular endothelial cells (SBEC). Immunofluorescence showed this SBEC cell line to be unique for its expression of CSA-proteoglycans, namely CD44 and thrombomodulin, in the absence of CD36 and ICAM-1. RESULTS: The selected parasite population was used to monitor cytoadherence inhibition/dissociating activities in Saimiri sera collected at different times after intramuscular injection of 50 mg CSA/kg of body weight. Serum inhibitory activity was detectable 30 min after injection and persisted for 8 hr. Furthermore, when chondroitin-4-sulfate was injected into monkeys infected with Palo-Alto (FUP) 1 P. falciparum, erythrocytes containing P. falciparum mature forms were released into the circulation. The cytoadherence phenotype of circulating infected red blood cells (IRBC) was determined before and 8 hr after inoculation of CSA. Before inoculation, in vitro cytoadherence of IRBCs was not inhibited by CSA. In contrast, in vitro cytoadherence of circulating infected erythrocytes obtained 8 hr after CSA inoculation was inhibited by more than 90% by CSA. CONCLUSIONS: In the squirrel monkey model for infection with P. falciparum, chondroitin-4-sulfate impairs in vitro and in vivo cytoadherence of parasitized erythrocytes.  相似文献   

3.
The zeta potential (ZP) is an electrochemical property of cell surfaces that is determined by the net electrical charge of molecules exposed at the surface of cell membranes. Membrane proteins contribute to the total net electrical charge of cell surfaces and can alter ZP through variation in their copy number and changes in their intermolecular interactions. Plasmodium falciparum extensively remodels its host red blood cell (RBC) membrane by placing 'knob'-like structures at the cell surface. Using an electrophoretic mobility assay, we found that the mean ZP of human RBCs was -15.7 mV. In RBCs infected with P. falciparum trophozoites ('iRBCs'), the mean ZP was significantly lower (-14.6 mV, p<0.001). Removal of sialic acid from the cell surface by neuraminidase treatment significantly decreased the ZP of both RBCs (-6.06 mV) and iRBCs (-4.64 mV). Parasite-induced changes in ZP varied by P. falciparum clone and the presence of knobs on the iRBC surface. Variations in ZP values were accompanied by altered binding of iRBCs to human microvascular endothelial cells (MVECs). These data suggest that parasite-derived knob proteins contribute to the ZP of iRBCs, and that electrostatic and hydrophobic interactions between iRBC and MVEC membranes are involved in cytoadherence.  相似文献   

4.
Inflammation, metastasis and ischemia are processes that require lymphocyte or leukocyte cell recognition and adherence to endothelial counter receptors such as ICAM-1. Mapping the sites of interaction of ICAM-1 with LFA-1, the receptor for ICAM-1 on lymphocytes, may lead to the design of novel inhibitors of inflammation or metastasis. To this end, recombinant soluble ICAM-1 cDNA was engineered into the baculovirus expression system, which is capable of expressing large amounts of proteins. These constructs were designed to contain a protein leader sequence so that the transfected insect cells would secrete the recombinant polypeptide into the culture media for ease of isolation. We engineered four constructs of ICAM-1 into the baculovirus system and obtained relatively high expression of two soluble forms of ICAM-1, a two domain and a five domain form. These truncated proteins were isolated and shown to promote adherence of HL-60 cells and Molt-4 cells. These recombinant soluble proteins also inhibited cell adherence to purified intact ICAM-1 isolated from K562 cells.  相似文献   

5.
Bertonati C  Tramontano A 《Proteins》2007,69(2):215-222
Malaria is caused by protozoan parasites of the genus Plasmodium. Four species of Plasmodium can infect humans: P. falciparum, P. malariae, P. vivax, and P. ovale. P. falciparum is the only able to cytoadhere to the surface of postcapillary endothelial cells. A key role in cytoadherence is played by the interaction between the PfEMP1 P. falciparum protein and the human intracellular adhesion molecule (ICAM-1) although very little is known about the molecular details of this complex. Here we propose a model for this interaction on the basis of a homology model of the functional domain of PfEMP1 and of the ICAM-1 three dimensional structures. Our model is consistent with the results of many experimental observations, provides a rational explanation for the different binding abilities of different strains of P. falciparum and explains the reduced binding affinity of the A4 strain of P. falciparum for the ICAM-1(Kilifi) polymorphism. On the basis of our model, we can also explain why the murine ICAM-1, although sharing 70% sequence similarity with its human homologue, does not bind PfEMP1, and why the binding of fibrinogen and PfEMP1 to ICAM-1 is mutually exclusive. The model of the complex proposed here can serve as a useful tool for the design and interpretation of biochemical and immunological experimental results.  相似文献   

6.
The Duffy binding-like (DBL) domain is a key adhesive module in Plasmodium falciparum, present in both erythrocyte invasion ligands (EBLs) and the large and diverse P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of cytoadherence receptors. DBL domains bind a variety of different host receptors, including intercellular adhesion molecule 1 (ICAM-1), a receptor interaction that may have a role in infected erythrocyte binding to cerebral blood vessels and cerebral malaria. In this study, we expressed the nearly full complement of DBLbeta-C2 domains from the IT4/25/5 (IT4) parasite isolate and showed that ICAM-1-binding domains (DBLbeta-C2(ICAM-1)) were confined to group B and group C PfEMP1 proteins and were not present in group A, suggesting that ICAM-1 selection pressure differs between PfEMP1 groups. To further dissect the molecular determinants of binding, we modelled a DBLbeta-C2(ICAM-1) domain on a solved DBL structure and created alanine substitution mutants in two DBLbeta-C2(ICAM-1) domains. This analysis indicates that the DBLbeta-C2::ICAM-1 interaction maps to the equivalent glycan binding region of EBLs, and suggests a general model for how DBL domains evolve under dual selection for host receptor binding and immune evasion.  相似文献   

7.
The basis of severe malaria pathogenesis in part includes sequestration of Plasmodium falciparum-infected erythrocytes (IE) from the peripheral circulation. This phenomenon is mediated by the interaction between several endothelial receptors and one of the main parasite-derived variant antigens (PfEMP1) expressed on the surface of the infected erythrocyte membrane. One of the commonly used host receptors is ICAM-1, and it has been suggested that ICAM-1 has a role in cerebral malaria pathology, although the evidence to support this is not conclusive. The current study examined the cytoadherence patterns of lab-adapted patient isolates after selecting on ICAM-1. We investigated the binding phenotypes using variant ICAM-1 proteins including ICAM-1Ref, ICAM-1Kilifi, ICAM-1S22/A, ICAM-1L42/A and ICAM-1L44/A using static assays. The study also examined ICAM-1 blocking by four anti-ICAM-1 monoclonal antibodies (mAb) under static conditions. We also characterised the binding phenotypes using Human Dermal Microvascular Endothelial Cells (HDMEC) under flow conditions. The results show that different isolates have variant-specific binding phenotypes under both static and flow conditions, extending our previous observations that this variation might be due to variable contact residues on ICAM-1 being used by different parasite PfEMP1 variants.  相似文献   

8.
The cytoadherence of Plasmodium falciparum-infected erythrocytes (FCR-3 line) to human brain capillary endothelial cells (HBEC), C32 amelanotic melanoma cells, and human umbilical vein endothelial cells (HUVEC) was studied. The adhesion of infected red cells was HBEC > amelanotic melanoma > HUVEC. The presence or absence of the adhesive ligands ICAM-1 (CD54 or intercellular adhesion molecule 1), ICAM-2, and CD36 (= glycoprotein IV) was determined for each of these cells by indirect immunofluorescence using the monoclonal antibodies RR1/1, 6D5, and OKM 5/OKM 8, respectively. It appeared that a major ligand for the FCR-3 line of P. falciparum with amelanotic melanoma cells and HBECs was CD36. Binding to HUVECs was very low, presumably due to their lack of expression of CD36. HBECs, because of their ease of in vitro propagation, long-term maintenance of cytoadherent properties, and their high degree of adhesiveness, will be useful for in vitro studies of adherence.  相似文献   

9.

Background

Plasmodium vivax infections seldom kill directly but do cause indirect mortality by reducing birth weight and causing abortion. Cytoadherence and sequestration in the microvasculature are central to the pathogenesis of severe Plasmodium falciparum malaria, but the contribution of cytoadherence to pathology in other human malarias is less clear.

Methodology

The adherence properties of P. vivax infected red blood cells (PvIRBC) were evaluated under static and flow conditions.

Principal Findings

P. vivax isolates from 33 patients were studied. None adhered to immobilized CD36, ICAM-1, or thrombospondin, putative ligands for P. falciparum vascular cytoadherence, or umbilical vein endothelial cells, but all adhered to immobilized chondroitin sulphate A (CSA) and hyaluronic acid (HA), the receptors for adhesion of P. falciparum in the placenta. PvIRBC also adhered to fresh placental cells (N = 5). Pre-incubation with chondroitinase prevented PvIRBC adherence to CSA, and reduced binding to HA, whereas preincubation with hyaluronidase prevented adherence to HA, but did not reduce binding to CSA significantly. Pre-incubation of PvIRBC with soluble CSA and HA reduced binding to the immobilized receptors and prevented placental binding. PvIRBC adhesion was prevented by pre-incubation with trypsin, inhibited by heparin, and reduced by EGTA. Under laminar flow conditions the mean (SD) shear stress reducing maximum attachment by 50% was 0.06 (0.02) Pa but, having adhered, the PvIRBC could then resist detachment by stresses up to 5 Pa. At 37°C adherence began approximately 16 hours after red cell invasion with maximal adherence at 30 hours. At 39°C adherence began earlier and peaked at 24 hours.

Significance

Adherence of P. vivax-infected erythrocytes to glycosaminoglycans may contribute to the pathogenesis of vivax malaria and lead to intrauterine growth retardation.  相似文献   

10.
It is generally accepted that Plasmodium vivax, the most widely distributed human malaria parasite, causes mild disease and that this species does not sequester in the deep capillaries of internal organs. Recent evidence, however, has demonstrated that there is severe disease, sometimes resulting in death, exclusively associated with P. vivax and that P. vivax-infected reticulocytes are able to cytoadhere in vitro to different endothelial cells and placental cryosections. Here, we review the scarce and preliminary data on cytoadherence in P. vivax, reinforcing the importance of this phenomenon in this species and highlighting the avenues that it opens for our understanding of the pathology of this neglected human malaria parasite.  相似文献   

11.
The GTPase Rho is known to mediate the assembly of integrin-containing focal adhesions and actin stress fibers. Here, we investigate the role of Rho in regulating the distribution of the monocyte-binding receptors E-selectin, ICAM-1, and VCAM-1 in human endothelial cells. Inhibition of Rho activity with C3 transferase or N19RhoA, a dominant negative RhoA mutant, reduced the adhesion of monocytes to activated endothelial cells and inhibited their spreading. Similar effects were observed after pretreatment of endothelial cells with cytochalasin D. In contrast, dominant negative Rac and Cdc42 proteins did not affect monocyte adhesion or spreading. C3 transferase and cytochalasin D did not alter the expression levels of monocyte-binding receptors on endothelial cells, but did inhibit clustering of E-selectin, ICAM-1, and VCAM-1 on the cell surface induced by monocyte adhesion or cross-linking antibodies. Similarly, N19RhoA inhibited receptor clustering. Monocyte adhesion and receptor cross-linking induced stress fiber assembly, and inhibitors of myosin light chain kinase prevented this response but did not affect receptor clustering. Finally, receptor clusters colocalized with ezrin/moesin/ radixin proteins. These results suggest that Rho is required in endothelial cells for the assembly of stable adhesions with monocytes via the clustering of monocyte-binding receptors and their association with the actin cytoskeleton, independent of stress fiber formation.  相似文献   

12.

Background

Cerebral malaria (CM) is responsible for most of the malaria-related deaths in children in sub-Saharan Africa. Although, not well understood, the pathogenesis of CM involves parasite and host factors which contribute to parasite sequestration through cytoadherence to the vascular endothelium. Cytoadherence to brain microvasculature is believed to involve host endothelial receptor, CD54 or intercellular adhesion molecule (ICAM)-1, while other receptors such as CD36 are generally involved in cytoadherence of parasites in other organs. We therefore investigated the contributions of host ICAM-1 expression and levels of antibodies against ICAM-1 binding variant surface antigen (VSA) on parasites to the development of CM.

Methodology/Principal Findings

Paediatric malaria patients, 0.5 to 13 years were recruited and grouped into CM and uncomplicated malaria (UM) patients, based on well defined criteria. Standardized ELISA protocol was used to measure soluble ICAM-1 (sICAM-1) levels from acute plasma samples. Levels of IgG to CD36- or ICAM-1-binding VSA were measured by flow cytometry during acute and convalescent states. Wilcoxon sign rank-test analysis to compare groups revealed association between sICAM-1 levels and CM (p<0.0037). Median levels of antibodies to CD36-binding VSA were comparable in the two groups at the time of admission and 7 days after treatment was initiated (p>0.05). Median levels of antibodies to CD36-binding VSAs were also comparable between acute and convalescent samples within any patient group. Median levels of antibodies to ICAM-1-binding VSAs were however significantly lower at admission time than during recovery in both groups.

Conclusions/Significance

High levels of sICAM-1 were associated with CM, and the sICAM-1 levels may reflect expression levels of the membrane bound form. Anti-VSA antibody levels to ICAM-binding parasites was more strongly associated with both UM and CM than antibodies to CD36 binding parasites. Thus, increasing host sICAM-1 levels were associated with CM whilst antibodies to parasite expressing non-ICAM-1-binding VSAs were not.  相似文献   

13.
Induction of the adhesion molecules ELAM-1 and ICAM-1 on endothelial cells is a key pro-inflammatory effect of tumour necrosis factor (TNF). Earlier work in non-human systems has suggested that unlike other cell types, endothelial cells interact with the N-terminus of the TNF molecule, thereby implying novel TNF receptors on endothelial cells. This is also supported by 125I-TNF cross-linking studies on bovine endothelial cells. The present study aimed to see whether TNF induction of ELAM-1 and ICAM-1 on human umbilical vein endothelial cells (HUVECs) involved novel TNF-receptor interactions. Three approaches were employed. First, antibodies directed at different sites on the TNF molecule were tested for inhibition of TNF-induction of ELAM-1 and ICAM-1 on HUVECs. Inhibition was seen only with antibodies reacting with epitopes outside the N-terminal region. Second, an N-terminal TNF peptide (residues 1-26) failed to induce ELAM-1 and ICAM-1 on HUVECs or antagonise TNF induction of these molecules. Third, HUVEC/125I-TNF cross-linking revealed a major complex characteristic of the known 55 kDa TNF receptor: this was confirmed with receptor-specific monoclonal antibodies. It is concluded that (a) the same part of the TNF molecule interacts with TNF-receptors on HUVECs and other cell types and (b) TNF induction of ELAM-1 and ICAM-1 on HUVECs is mediated via the well-characterized 55 kDa TNF receptor.  相似文献   

14.
The association of estrogen receptors with non-nuclear/cytoplasmic compartments in target tissues has been documented. However, limited information is available on the distribution of estrogen receptor isoforms, specially with regard to the newly described beta isotype. The subcellular localization of estrogen receptor alpha and beta isoforms was investigated in rabbit uterus and ovary. Native alpha and beta subtypes were immunodetected using specific antibodies after subjecting the tissue to fractionation by differential centrifugation. The ovary expressed alpha and beta estrogen receptors in predominant association to cytosolic components. However, in the uterus, a substantial proportion of the total estrogen binding capacity and coexpression of the two isoforms was detected in mitochondria and microsomes. The mitochondrial-enriched subfraction represented an important source of 17beta-estradiol binding, where the steroid was recognized in a stereospecific and high affinity manner. The existence of mitochondrial and membrane estrogen binding sites correlated with the presence of estrogen receptor alpha but mainly with estrogen receptor beta proteins. Using macromolecular 17beta-estradiol derivatives in Ligand Blot studies, we could confirm that both alpha and beta isoforms were expressed as the major estrogen binding proteins in the uterus, while estrogen receptor alpha was clearly the dominant isoform in the ovary. Other low molecular weight estrogen receptor alpha-like proteins were found to represent an independent subpopulation of uterine binding sites, expressed to a lesser extent. This differential cellular partitioning of estrogen receptor alpha and beta forms may contribute to the known diversity of 17beta-estradiol effects in target organs. Both estrogen receptor alpha and beta expression levels and cellular localization patterns among tissues, add complexity to the whole estrogen signaling system, in which membrane and mitochondrial events could also be implicated.  相似文献   

15.
Plasmalemmal caveolae are membrane microdomains that are specifically enriched in sphingolipids and contain a wide array of signaling proteins, including the endothelial isoform of nitric-oxide synthase (eNOS). EDG-1 is a G protein-coupled receptor for sphingosine 1-phosphate (S1P) that is expressed in endothelial cells and has been implicated in diverse vascular signal transduction pathways. We analyzed the subcellular distribution of EDG-1 in COS-7 cells transiently transfected with cDNA constructs encoding epitope-tagged EDG-1. Subcellular fractionation of cell lysates resolved by ultracentrifugation in discontinuous sucrose gradients revealed that approximately 55% of the EDG-1 protein was recovered in fractions enriched in caveolin-1, a resident protein of caveolae. Co-immunoprecipitation experiments showed that EDG-1 could be specifically precipitated by antibodies directed against caveolin-1 and vice versa. The targeting of EDG-1 to caveolae-enriched fractions was markedly increased (from 51 +/- 11% to 93 +/- 14%) by treatment of transfected cells with S1P (5 microm, 60 min). In co-transfection experiments expressing EDG-1 and eNOS cDNAs in COS-7 cells, we found that S1P treatment significantly and specifically increased nitric-oxide synthase activity, with an EC(50) of 30 nm S1P. Overexpression of transfected caveolin-1 cDNA together with EDG-1 and eNOS markedly diminished S1P-mediated eNOS activation; caveolin overexpression also attenuated agonist-induced phosphorylation of EDG-1 receptor by >90%. These results suggest that the interaction of the EDG-1 receptor with caveolin may serve to inhibit signaling through the S1P pathway, even as the targeting of EDG-1 to caveolae facilitates the interactions of this receptor with ligands and effectors that are also targeted to caveolae. The agonist-modulated targeting of EDG-1 to caveolae and its dynamic inhibitory interactions with caveolin identify new points for regulation of sphingolipid-dependent signaling in the vascular wall.  相似文献   

16.
We report herein on the role of N-linked oligosaccharide processing of endothelial cell surface proteins on the adhesion of neutrophils. Monolayers of human umbilical vein endothelial cells were treated for 24 h with deoxymannojirimycin (DMJ), an inhibitor of golgi mannosidase I, which results in changes in glycoprotein processing, and then incubated with neutrophils to examine their ability to adhere to the treated endothelial cells. Treatment with DMJ, which leads to accumulation of high mannose type oligosaccharides, resulted in a twofold increase in adherence of phorbol ester (PMA) activated neutrophils compared to attachment to untreated endothelial cells. This adherence was likely mediated by the β2 integrin, Mac-1, and could be specifically inhibited with monoclonal antibodies to ICAM-1 and to the integrin β2 subunit. Similarly, IL-1 treatment resulted in a β2 integrin mediated increase in neutrophil adherence to the DMJ treated endothelial cells in a dose dependent manner. However, the IL-1 induced adherence was not significantly inhibited by the anti-ICAM-1 antibody, thus, suggesting the presence of other inducible components on the endothelial cell surface. Our results demonstrate that alterations in glycosylation of N-linked oligosaccharides, resulting in the synthesis of high mannose type sugars on molecules that may interact with the β2 integrins, leads to an increased adherence of PMA activated neutrophils to endothelial cells. © 1993 Wiley-Liss, Inc.  相似文献   

17.
The E5 oncoprotein of bovine papillomavirus type 1 is a 44 amino acid, highly hydrophobic protein that induces the stable transformation of immortalized murine fibroblasts, presumably through its activation of growth factor receptors. Previous studies have shown that the E5 protein complexes with the 16 kDa (16k) pore-forming protein of vacuolar H(+)-ATPases. This integral membrane protein is essential for the acidification and function of subcellular compartments that process growth factor receptors. Using an SV40 expression system in COS cells, we analyzed whether the E5-16k complexes bind additional cellular proteins, including growth factor receptors. These studies demonstrate that E5 binds to both the 16k protein and the PDGF receptor and that this tri-component complex can be isolated with antibodies specific for each protein. Importantly, the 16k protein bound to the PDGF receptor in the absence of E5, suggesting that E5 binds to the PDGF receptor via its interaction with the 16k protein. An E5 mutant lacking the hydrophilic carboxyl-terminal 14 amino acids retained binding to both 16k and the PDGF receptor, indicating that E5 binds to these proteins through its hydrophobic, membrane-associating domain. These studies reveal that hydrophobic, intramembrane interactions govern the association of E5, 16k and the PDGF receptor, suggesting a ligand-independent mechanism for receptor activation and a potential link between receptor signal transduction pathways and membrane pore activity.  相似文献   

18.
Previous studies have shown that inflammatory pathologies are mediated by lymphocyte adhesion to endothelium and subsequent transmigration through the endothelial monolayer. Lymphocyte-endothelial adherence is, in part, caused by the leukocyte integrin LFA-1 binding to ICAM-1, its ligand on endothelial cells. Synthetic peptides based on specific amino acid sequences of human ICAM-1 inhibit the adherence of a lymphocytic cell line, Molt-4, to cytokine-stimulated endothelial cells. A total of 26 peptides spanning the extracellular domains of ICAM-1 were evaluated for their inhibitory activity in two cell adhesion assays. Binding of fluorescently labeled Molt-4 cells to TNF-stimulated human umbilical vein endothelial cells was inhibited reproducibly by peptides ICAM1-20, ICAM26-50, ICAM40-64, ICAM132-146, and ICAM345-375. Three overlapping sequences of the peptide ICAM40-64, KELLLPGNNRKVYELSNVQEDSQPM, were synthesized and tested as well, and the sequence KELLLPGNNRKV showed the greatest inhibition. The inhibitory activity of these peptides was confirmed using a second assay, inhibition of aggregation of the Epstein-Barr virus-transformed B-lymphoblast line JY. Polyclonal antibodies were developed in rabbits by immunization with two of the peptides and characterized for their ability to inhibit lymphocyte-endothelial adherence. These studies predict potential sites for interaction of the integrin receptor, LFA-1, with its ligand, ICAM-1. Thus lymphocyte-endothelial interaction, and resulting inflammation, may be partially mediated by the association of ICAM-1 with LFA-1 at the specific molecular locations identified in this study.  相似文献   

19.
Unliganded steroid receptors exist as heteromeric complexes comprised of heat shock and immunophilin proteins that associate either directly or indirectly with receptor carboxyl–terminal ligand-binding domains. Molecular chaperons, and other proteins associated with steroid receptors, play an important role in the maturation of receptors to a hormone-binding competent state. Steroid receptor-associated 90 and 70 kDa heat shock proteins, hsp90 and hsp70, respectively, have well established roles in protein folding in addition to participating in numerous subcellular trafficking pathways. In this review, we discuss the possible roles that molecular chaperons, such as hsp90, hsp70 and DnaJ proteins, have in steroid receptor trafficking within two distinct subcellular compartments, i.e. the cytoplasm and nucleus.  相似文献   

20.
Neurotrophin receptor trafficking plays an important role in directing cellular communication in developing as well as mature neurons. However, little is known about the requirements for intracellular localization of the neurotrophin receptors in neurons. To isolate the subcellular membrane compartments containing the Trk neurotrophin receptor, we performed biochemical subcellular fractionation experiments using primary cortical neurons and rat PC12 pheochromocytoma cells. By differential centrifugation and density gradient centrifugation, we have isolated Trk-bearing compartments, suggesting distinct membranous localization of Trk receptors. A number of Trk-interacting proteins, such as GIPC and dynein light chain Tctex-1 were found in these fractions. Additionally, membranes enriched in phosphorylated activated forms of Trk receptors were found upon ligand treatment in primary neurons and PC12 cells. Interestingly, density gradient centrifugation experiments showed that Trk receptors from PC12 cells are present in heavy membrane fractions, while Trk from primary neurons are fractionated in lighter membrane fractions. These results suggest that the intracellular membrane localization of Trk can differ according to cell type. Taken together, these biochemical approaches allowed separation of distinct Trk-bearing membrane pools, which may be involved in different functions of neurotrophin receptor signaling and trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号