首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of IL-18 to IL-18Rα induces both proinflammatory and protective functions during infection, depending on the context in which it occurs. IL-18 is highly expressed in the liver of wild-type (WT) C57BL/6 mice following lethal infection with highly virulent Ixodes ovatus ehrlichia (IOE), an obligate intracellular bacterium that causes acute fatal toxic shock-like syndrome. In this study, we found that IOE infection of IL-18Rα(-/-) mice resulted in significantly less host cell apoptosis, decreased hepatic leukocyte recruitment, enhanced bacterial clearance, and prolonged survival compared with infected WT mice, suggesting a pathogenic role for IL-18/IL-18Rα in Ehrlichia-induced toxic shock. Although lack of IL-18R decreased the magnitude of IFN-γ producing type-1 immune response, enhanced resistance of IL-18Rα(-/-) mice against Ehrlichia correlated with increased proinflammatory cytokines at sites of infection, decreased systemic IL-10 production, increased frequency of protective NKT cells producing TNF-α and IFN-γ, and decreased frequency of pathogenic TNF-α-producing CD8(+) T cells. Adoptive transfer of immune WT CD8(+) T cells increased bacterial burden in IL-18Rα(-/-) mice following IOE infection. Furthermore, rIL-18 treatment of WT mice infected with mildly virulent Ehrlichia muris impaired bacterial clearance and enhanced liver injury. Finally, lack of IL-18R signal reduced dendritic cell maturation and their TNF-α production, suggesting that IL-18 might promote the adaptive pathogenic immune responses against Ehrlichia by influencing T cell priming functions of dendritic cells. Together, these results suggested that the presence or absence of IL-18R signals governs the pathogenic versus protective immunity in a model of Ehrlichia-induced immunopathology.  相似文献   

2.
Regulation of infection with Histoplasma capsulatum by TNFR1 and -2   总被引:2,自引:0,他引:2  
The concerted action of several cytokines is necessary for resolution of both primary and secondary infection with Histoplasma capsulatum. Among the soluble factors that contribute to tissue sterilization, TNF-alpha stands as a central mediator of protective immunity to this fungus. In this study, we explored the regulation of protective immunity by TNFR1 and -2. In primary pulmonary infection, both TNFR1-/- and -2-/- mice manifested a high mortality after infection with H. capsulatum, although TNFR1-/- mice were more susceptible than TNFR2 -/- mice. Overwhelming infection in the former was associated with a pronounced decrement in the number of inflammatory cells in the lungs and elevated IFN-gamma and TNF-alpha levels in the lungs. In contrast, IFN-gamma levels were markedly decreased in TNFR2-/- mice, and treatment with this cytokine restored protective immunity. Lung macrophages from both groups of knockout mice released substantial amounts of NO. Upon secondary infection, TNFR2-/- mice survived rechallenge and cleared infection as efficiently as C57BL/6 animals. In contrast, mice given mAb to TNFR1 succumbed to reexposure, and the high mortality was accompanied by a significant increase in fungal burden in the lungs. Both IL-4 and IL-10 were elevated in the lungs of these mice. The results demonstrate the pivotal influence of TNFR1 and -2 in controlling primary infection and highlight the differences between these receptors for regulation reexposure histoplasmosis.  相似文献   

3.
Despite advancements in renal replacement therapy, the mortality rate for acute kidney injury (AKI) remains unacceptably high, likely due to remote organ injury. Kidney ischemia-reperfusion injury (IRI) activates cellular and soluble mediators that incite a distinct pulmonary proinflammatory and proapoptotic response. Tumor necrosis factor receptor 1 (TNFR1) has been identified as a prominent death receptor activated in the lungs during ischemic AKI. We hypothesized that circulating TNF-α released from the postischemic kidney induces TNFR1-mediated pulmonary apoptosis, and we aimed to elucidate molecular pathways to programmed cell death. Using an established murine model of kidney IRI, we characterized the time course for increased circulatory and pulmonary TNF-α levels and measured concurrent upregulation of pulmonary TNFR1 expression. We then identified TNFR1-dependent pulmonary apoptosis after ischemic AKI using TNFR1-/- mice. Subsequent TNF-α signaling disruption with Etanercept implicated circulatory TNF-α as a key soluble mediator of pulmonary apoptosis and lung microvascular barrier dysfunction during ischemic AKI. We further elucidated pathways of TNFR1-mediated apoptosis with NF-κB (Complex I) and caspase-8 (Complex II) expression and discovered that TNFR1 proapoptotic signaling induces NF-κB activation. Additionally, inhibition of NF-κB (Complex I) resulted in a proapoptotic phenotype, lung barrier leak, and altered cellular flice inhibitory protein signaling independent of caspase-8 (Complex II) activation. Ischemic AKI activates soluble TNF-α and induces TNFR1-dependent pulmonary apoptosis through augmentation of the prosurvival and proapoptotic TNFR1 signaling pathway. Kidney-lung crosstalk after ischemic AKI represents a complex pathological process, yet focusing on specific biological pathways may yield potential future therapeutic targets.  相似文献   

4.
The role of tumor necrosis factor (TNF)-α and its receptors in neuroautoimmune and neuroinflammatory diseases has been controversial. On the basis of our previous studies, we hereby aimed to further clarify TNF-α's mechanism of action and to explore the potential role of TNF-α receptor (TNFR)1 as a therapeutic target in experimental autoimmune neuritis (EAN). EAN was induced by immunization with P0 peptide 180-199 in TNF-α knockout (KO) mice and anti-TNFR1 antibodies were used to treat EAN. Particularly, the effects of TNF-α deficiency and TNFR1 blockade on macrophage functions were investigated. The onset of EAN in TNF-α KO mice was markedly later than that in wild type (WT) mice. From day 14 post immunization, the clinical signs of TNF-α KO mice were significantly milder than those of their WT counterparts. Further, we showed that the clinical severity of WT mice treated with anti-TNFR1 antibodies was less severe than that of the control WT mice receiving PBS. Nevertheless, no difference with regard to the clinical signs of EAN or inflammatory infiltration in cauda equina was seen between TNF-α KO and WT mice with EAN after blockade of TNFR1. Although TNF-α deficiency did not alter the proliferation of lymphocytes in response to either antigenic or mitogenic stimuli, it down-regulated the production of interleukin (IL)-12 and nitric oxide (NO), and enhanced the production of IL-10 in macrophages. Increased ratio of regulatory T cells (Tregs) and reduced production of interferon (IFN)-γ in cauda equina infiltrating cells, and elevated levels of IgG2b antibodies against P0 peptide 180-199 in sera were found in TNF-α KO mice with EAN. In conclusion, TNF-α deficiency attenuates EAN via altering the M1/M2 balance of macrophages.  相似文献   

5.
Although γherpesvirus infections are associated with enhanced lung fibrosis in both clinical and animal studies, there is limited understanding about fibrotic effects of γherpesviruses on cell types present in the lung, particularly during latent infection. Wild-type mice were intranasally infected with a murine γherpesvirus (γHV-68) or mock-infected with saline. Twenty-eight days postinfection (dpi), ~14 days following clearance of the lytic infection, alveolar macrophages (AMs), mesenchymal cells, and CD19-enriched cell populations from the lung and spleen express M(3) and/or glycoprotein B (gB) viral mRNA and harbor viral genome. AMs from infected mice express more transforming growth factor (TGF)-β(1), CCL2, CCL12, TNF-α, and IFN-γ than AMs from mock-infected mice. Mesenchymal cells express more total TGF-β(1), CCL12, and TNF-α than mesenchymal cells from mock-infected mice. Lung and spleen CD19-enriched cells express more total TGF-β(1) 28 dpi compared with controls. The CD19-negative fraction of the spleen overexpresses TGF-β(1) and harbors viral genome, but this likely represents infection of monocytes. Purified T cells from the lung harbor almost no viral genome. Purified T cells overexpress IL-10 but not TGF-β(1). Intracellular cytokine staining demonstrated that lung T cells at 28 dpi produce IFN-γ but not IL-4. Thus infection with a murine γherpesvirus is sufficient to upregulate profibrotic and proinflammatory factors in a variety of lung resident and circulating cell types 28 dpi. Our results provide new information about possible contributions of these cells to fibrogenesis in the lungs of individuals harboring a γherpesvirus infection and may help explain why γHV-68 infection can augment or exacerbate fibrotic responses in mice.  相似文献   

6.
The ability of Coxiella burnetii to modulate host cell death may be a critical factor in disease development. In this study, human monocytic THP-1 cells were used to examine the ability of C. burnetii Nine Mile phase II (NMII) to modulate apoptotic signaling. Typical apoptotic cell morphological changes and DNA fragmentation were detected in NMII infected cells at an early stage of infection. FACS analysis using Annexin-V-PI double staining showed the induction of a significant number of apoptotic cells at an early stage of NMII infection. Double staining of apoptotic cell DNA and intracellular C. burnetii indicates that NMII infected cells undergoing apoptosis. Interestingly, caspase-3 was not cleaved in NMII infected cells and the caspase-inhibitor Z-VAD-fmk did not prevent NMII induced apoptosis. Surprisingly, the caspase-3 downstream substrate PARP was cleaved in NMII infected cells. These results suggest that NMII induces apoptosis during an early stage of infection through a caspase-independent pathway in THP-1 cells. In addition, NMII-infected monocytes were unable to prevent exogenous staurosporine-induced apoptotic death. Western blot analysis indicated that NMII infection induced the translocation of AIF from mitochondria into the nucleus. Cytochrome c release and cytosol-to-mitochondrial translocation of the pore-forming protein Bax in NMII infected cells occurred at 24 h post infection. These data suggest that NMII infection induced caspase-independent apoptosis through a mechanism involving cytochrome c release, cytosol-to-mitochondrial translocation of Bax and nuclear translocation of AIF in THP-1 monocytes. Furthermore, NMII infection increased TNF-α production and neutralization of TNF-α in NMII infected cells partially blocked PARP cleavage, suggesting TNF-α may play a role in the upstream signaling involved in NMII induced apoptosis. Antibiotic inhibition of C. burnetii RNA synthesis blocked NMII infection-induced PARP activation. These results suggest that both intracellular C. burnetii replication and secreted TNF-α contribute to NMII infection-triggered apoptosis during an early stage of infection.  相似文献   

7.
We have shown that febrile-range hyperthermia enhances lung injury and mortality in mice exposed to inhaled LPS and is associated with increased TNF-α receptor activity, suppression of NF-κB activity in vitro, and increased apoptosis of alveolar epithelial cells in vivo. We hypothesized that hyperthermia enhances lung injury and mortality in vivo by a mechanism dependent on TNF receptor signaling. To test this, we exposed mice lacking the TNF-receptor family members TNFR1/R2 or Fas (TNFR1/R2(-/-) and lpr) to inhaled LPS with or without febrile-range hyperthermia. For comparison, we studied mice lacking IL-1 receptor activity (IL-1R(-/-)) to determine the role of inflammation on the effect of hyperthermia in vivo. TNFR1/R2(-/-) and lpr mice were protected from augmented alveolar permeability and mortality associated with hyperthermia, whereas IL-1R(-/-) mice were susceptible to augmented alveolar permeability but protected from mortality associated with hyperthermia. Hyperthermia decreased pulmonary concentrations of TNF-α and keratinocyte-derived chemokine after LPS in C57BL/6 mice and did not affect pulmonary inflammation but enhanced circulating markers of oxidative injury and nitric oxide metabolites. The data suggest that hyperthermia enhances lung injury by a mechanism that requires death receptor activity and is not directly associated with changes in inflammation mediated by hyperthermia. In addition, hyperthermia appears to enhance mortality by generating a systemic inflammatory response and not by a mechanism directly associated with respiratory failure. Finally, we observed that exposure to febrile-range hyperthermia converts a modest, survivable model of lung injury into a fatal syndrome associated with oxidative and nitrosative stress, similar to the systemic inflammatory response syndrome.  相似文献   

8.
Genetically susceptible, TNFRp55 gene-deficient (TNFRp55-/-) mice succumb to infection with Mycobacterium avium. Before their death, M. avium-infected TNFRp55-/- mice develop granulomatous lesions that, in contrast to granulomas in wild-type syngeneic mice, undergo acute disintegration. To determine the factors involved in these events, we depleted T cell subsets or neutralized the inflammatory cytokines IFN-gamma, IL-12, or TNF in TNFRp55-/- mice infected i.v. with M. avium. Infected TNFRp55-/- mice treated with a control mAb became moribund between days 26 and 34 postinfection, showing widespread inflammatory cell apoptosis within disintegrating granulomas. In contrast, TNFRp55-/- mice depleted of either CD4+ or CD8+ cells after granuloma initiation stayed healthy until at least day 38 postinfection and showed no signs of granuloma destruction. Neutralization of IL-12, but not of IFN-gamma or TNF, also protected M. avium-infected TNFRp55-/- mice from granuloma decomposition and from premature death. Treatment with dexamethasone or with a specific inhibitor of inducible NO synthase did not prevent granuloma dissolution or death of TNFRp55-/- mice. In conclusion, granuloma disintegration in TNFRp55-/- mice is a lethal event that is dependent on IL-12 and that is mediated by an excess of T cells.  相似文献   

9.
The present study was designed to elucidate the role of gammadelta T cells in the host defense against pulmonary infection with Cryptococcus neoformans. The gammadelta T cells in lungs commenced to increase on day 1, reached a peak level on day 3 or 6, and then decreased on day 10 after intratracheal infection. The increase of these cells was similar in monocyte chemoattractant protein (MCP)-1-deficient mice, although that of NK and NKT cells was significantly reduced. The number of live microorganisms in lungs on days 14 and 21 was significantly reduced in mice depleted of gammadelta T cells by a specific mAb compared with mice treated with control IgG. Similarly, elimination of this fungal pathogen was promoted in gammadelta T cell-deficient (TCR-delta(-/-)) mice compared with control littermate mice. Finally, lung and serum levels of IFN-gamma on days 7 and 14 and on day 7 postinfection, respectively, were significantly higher in TCR-delta(-/-) mice than in littermate mice, whereas levels of TGF-beta showed the opposite results. IL-4 and IL-10 were not different between these mice. IFN-gamma production by draining lymph node cells upon restimulation with cryptococcal Ags was significantly higher in the infected TCR-delta(-/-) mice than in control mice. Our results demonstrated that gammadelta T cells accumulated in the lungs in a manner different from NK and NKT cells after cryptococcal infection and played a down-modulatory role in the development of Th1 response and host resistance against this fungal pathogen.  相似文献   

10.
Chromoblastomycosis is a chronic infectious disease of the skin and subcutaneous tissue. However, the host-defence response to this fungal infection has not been investigated thoroughly. This study was carried out to analyse the sequential events and the change of local cytokine release in a murine model infected with Fonsecaea pedrosoi in footpad. The anti-inflammatory Th2 cytokine IL-10 demonstrated an upward trend up to 7 days post infection followed by a steady decline. The titers of TNF-α (a pro-inflammatory Th1 cytokine) increased up to 7 days post infection followed by a relatively steady-state until full recovery. The anti-inflammatory cytokine IL-4 showed a similar pattern as TNF-α. The pro-inflammatory cytokine IFN-γ did not increased until 7 days post infection, while demonstrated an upward trend up to 30 days when the mice reached a full recovery from infection.  相似文献   

11.
Chlamydia pneumoniae, an obligate intracellular bacterium, causes pneumonia in humans and mice. In this study, we show that GR1+/CD45+ polymorphonuclear neutrophils (PMN) surprisingly increase the bacterial load of C. pneumoniae in vivo. Upon intranasal infection of wild-type mice, the lung weight is increased; the cytokines TNF, IL-12p40, and IFN-gamma, as well as the chemokines keratinocyte-derived chemokine, MCP-1, and MIP-2 are secreted; and GR1+/CD45+ PMN are recruited into lungs 3 days postinfection. In contrast, in infected MyD88-deficient mice, which lack a key adaptor molecule in the signaling cascade of TLRs and IL-1R family members, the increase of the lung weight is attenuated, and from the analyzed cyto- and chemokines, only IL-12p40 is detectable. Upon infection, almost no influx of inflammatory cells into lungs of MyD88-deficient mice can be observed. Six days postinfection, however, MyD88-deficient mice were able to produce TNF, IFN-gamma, keratinocyte-derived chemokine, and MCP-1 in amounts similar to wild-type mice, but failed to secrete IL-12p40 and MIP-2. At this time point, the infection increased the lung weight to a level similar to wild-type mice. Curiously, the chlamydial burden in MyD88-deficient mice 3 days postinfection is lower than in wild-type mice, a finding that can be reproduced in wild-type mice by depletion of GR1+ cells. In analyzing how PMN influence the chlamydial burden in vivo, we find that PMN are infected and enhance the replication of C. pneumoniae in epithelial cells. Thus, the lower chlamydial burden in MyD88-deficient mice can be explained by the failure to recruit PMN.  相似文献   

12.
This paper investigates the role of specific immune factors on the course of infection in genetic knockout (gko) mice infected with 3 different strains of Neospora caninum. Survival time and parasite persistence were examined in interferon-gamma (IFN-gamma), tumor necrosis factor receptor-2 (TNFR2), interleukin 10 (IL-10), beta 2 microglobulin (beta2M), and inducible nitric oxide synthase (iNOS2) gko or wild-type (wt) mice following infection with either pathogenic (NC-1 or NC-2) or attenuated (NCts-8) N. caninum strains. Infection with NC-1 was 100% lethal in IFN-gamma gko mice, as evidenced by mean survival times of 10-13 days, depending on the challenge dose used. TNFR2 and beta2M gko mice infected with NC-1 or NC-2 strain demonstrated partial susceptibility to disease, as evidenced by histopathology and survival curves. TNFR2 or beta2M gko mice were not susceptible to infection with NCts-8, on the basis of absence of pathology and lack of mortality. Lack of mortality and minimal histopathology scores demonstrated that NC-1, NC-2, and NCts-8 infections were avirulent in IL-10 and iNOS2 gko mice. Adoptive transfer of immune cells from NCts-8 vaccinated normal syngeneic mice into IFN-gamma gko mice significantly (P < 0.05) prolonged mean survival times at all 3 challenge doses of NC-1 but failed to protect against mortality. Interestingly, there was a notable change in the tissue tropism of tachyzoites from the lung and brain in immunocompetent wt, TNFR2 gko, IL-10 gko, beta2M gko, and iNOS2 gko mice to the liver and spleen in IFN-gamma gko mice when challenged with N. caninum. On the basis of these results in gko mice, IFN-gamma is a critical cytokine in the host response against acute neosporosis.  相似文献   

13.
Toll-like receptors (TLRs) recognise pathogen-derived molecules and influence immunity to control parasite infections. This study aimed to evaluate the mRNA expression of TLRs 2 and 4, the expression and production of the cytokines interleukin (IL)-12, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-17, IL-10 and transforming growth factor (TGF)-β and the production of nitric oxide (NO) in the spleen of mice infected with Leishmania chagasi. It also aimed to evaluate any correlations between mRNA expression TLR2 and 4 and cytokines and NO production. Infection resulted in increased TLR2-4, IL-17, TNF-α and TGF-β mRNA expression during early infection, with decreased expression during late infection correlating with parasite load. IFN-γ and IL-12 mRNA expression decreased at the peak of parasitism. IL-10 mRNA expression increased throughout the entire time period analysed. Although TGF-β, TNF-α and IL-17 were highly produced during the initial phase of infection, IFN-γ and IL-12 exhibited high production during the final phase of infection. IL-10 and NO showed increased production throughout the evaluated time period. In the acute phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17, NO, IL-10 and TGF-β expression and parasite load. During the chronic phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17 and TGF-β expression and parasite load. Our data suggest that infection by L. chagasi resulted in modulation of TLRs 2 and 4 and cytokines.  相似文献   

14.
We examined the ability of recombinant guinea pig IL-8 (CXCL8) to activate neutrophils upon infection with virulent Mycobacterium tuberculosis. Using a Transwell insert culture system, contact-independent cell cultures were studied in which rgpIL-8-treated neutrophils were infected with virulent M. tuberculosis in the upper well, and AM were cultured in the lower well. IL-1β and TNF-α mRNA expression was significantly upregulated by AM. Neutralizing anti-rgpTNF-α polyclonal antibody abrogated the response of AM to supernatants from the rgpIL-8-treated, infected neutrophils, while an anti-rgpIL-8 polyclonal antibody had no effect. This suggests that TNF-α produced by rgpIL-8 treated, infected neutrophils may play an important role in the activation of AM in the early response of the host against M. tuberculosis infection. Significant induction of apoptosis in M. tuberculosis-infected neutrophils was observed as compared to the uninfected neutrophils. Feeding of infected, apoptotic neutrophils to AM induced a significant up-regulation of TNF-α and IL-1β mRNA compared to AM exposed to staurosporine-treated apoptotic neutrophils. Suppressed intracellular mycobacterial growth was also seen in AM fed with infected, apoptotic neutrophils as compared to the AM infected with M. tuberculosis H37Rv alone. Taken together, these data suggest that neutrophil–macrophage interactions may contribute to host defense against M. tuberculosis infection.  相似文献   

15.
Nontuberculous mycobacteria (NTM) infection is common in patients with structural lung damage. To address how NTM infection is established and causes lung damage, we established an NTM mouse model by intranasal inoculation of clinical isolates of M. intracellulare. During the 39-week course of infection, the bacteria persistently grew in the lung and caused progressive granulomatous and fibrotic lung damage with mortality exceeding 50%. Lung neutrophils were significantly increased at 1 week postinfection, reduced at 2 weeks postinfection and increased again at 39 weeks postinfection. IL-17A was increased in the lungs at 1–2 weeks of infection and reduced at 3 weeks postinfection. Depletion of neutrophils during early (0–2 weeks) and late (32–34 weeks) infection had no effect on mortality or lung damage in chronically infected mice. However, neutralization of IL-17A during early infection significantly reduced bacterial burden, fibrotic lung damage, and mortality in chronically infected mice. Since it is known that IL-17A regulates matrix metalloproteinases (MMPs) and that MMPs contribute to the pathogenesis of pulmonary fibrosis, we determined the levels of MMPs in the lungs of M. intracellulare-infected mice. Interestingly, MMP-3 was significantly reduced by anti-IL-17A neutralizing antibody. Moreover, in vitro data showed that exogenous IL-17A exaggerated the production of MMP-3 by lung epithelial cells upon M. intracellulare infection. Collectively, our findings suggest that early IL-17A production precedes and promotes organized pulmonary M. intracellulare infection in mice, at least in part through MMP-3 production.  相似文献   

16.
In a previous study, our group verified that 100% of mice survived to a lethal dose of Candida albicans following pretreatment with concanavalin-A (Con-A) for 3 days. This work proposed to investigate whether treatment could mediate an adaptative immune response involving T(H) 17 cells. A significant increase in IL-17 levels at 6 h postinfection was observed and was maintained up to 18 h in the Con-A group, whereas in control mice, a reduction in this cytokine was verified. In addition, T(H) 17 cells develop in the presence of TGF-β, IL-1 β, and IL-6 that were increased significantly 2 h postinfection in Con-A-treated mice. Macrophages were involved in the process, engulfing greater numbers of yeast cells, and were activated through TNF-α and interferon-γ produced at significant levels at 2 h postinfection. A significant increase in IL-12 levels was also observed at 2 h postinfection. Thus, activated macrophages were probably more capable of killing and processing Candida antigens, signalizing an adaptative immune response. Macrophages from controls did not prevent yeast-to-hyphae transition and were partially destroyed, as shown in scanning microscopy. These results suggest that treatment with Con-A facilitated the triggering of T(H) 17 and T(H) 1 responses via IL-17 and IFN-γ production, leading to the resolution of C. albicans infection.  相似文献   

17.
TNF-α and its two receptors (TNFR1 and 2) are known to stimulate dendritic cell (DC) maturation and T cell response. However, the specific receptor and mechanisms involved in vivo are still controversial. In this study, we show that in response to an attenuated mouse hepatitis virus infection, DCs fail to mobilize and up-regulate CD40, CD80, CD86, and MHC class I in TNFR1(-/-) mice as compared with the wild-type and TNFR2(-/-) mice. Correspondingly, virus-specific CD8 T cell response was dramatically diminished in TNFR1(-/-) mice. Adoptive transfer of TNFR1-expressing DCs into TNFR1(-/-) mice rescues CD8 T cell response. Interestingly, adoptive transfer of TNFR1-expressing naive T cells also restores DC mobilization and maturation and endogenous CD8 T cell response. These results show that TNFR1, not TNFR2, mediates TNF-α stimulation of DC maturation and T cell response to mouse hepatitis virus in vivo. They also suggest two mechanisms by which TNFR1 mediates TNF-α-driven DC maturation, as follows: a direct effect through TNFR1 expressed on immature DCs and an indirect effect through TNFR1 expressed on naive T cells.  相似文献   

18.
The influence of whole-body gamma-irradiation on the antibacterial host defense against Enterococcus faecalis translocation was investigated. Mice irradiated with or without 5 Gy [(137)Cs] gamma-rays were orally infected with 10(6) CFU/mouse E. faecalis. The pathogen was detected in the mesenteric lymph nodes (MLNs) of irradiated mice 1-4 d postinfection, whereas E. faecalis was not isolated from MLNs of normal mice. All irradiated mice died within 5 d of infection, whereas no mortality was shown in normal mice infected with the pathogen. Irradiated mice inoculated with normal mouse MLN macrophages (M) were shown to be resistant against the infection, although the same mice inoculated with irradiated mouse MLNM (I-MLNM) died postinfection. I-MLNM were identified as IL-10(+)IL-12(-)CCL1(+)LIGHT(+) M (M2bM) and were shown to be inhibitory on M conversion from resident M to IL-10(-)IL-12(+)M (M1M). M2bM were demonstrated in MLNs of mice 10-35 d after gamma-irradiation. M1M were not induced by E. faecalis Ag in cultures of I-MLNM, whereas normal mouse MLNM were converted to M1M in response to the Ag stimulation. After treatment with CCL1 antisense oligodeoxynucleotides, M2bM disappeared in MLNs of irradiated mice, and M1M were generated in MLNs of these mice following E. faecalis stimulation. These results indicate that M2bM presented in the I-MLNM populations were responsible for the impaired resistance of mice irradiated with gamma-rays to bacterial translocation and subsequent sepsis. E. faecalis translocation and subsequent sepsis may be controlled immunologically by the intervention of M2bM present in MLNs.  相似文献   

19.
The number of cases of systemic histoplasmosis has increased substantially in recent years, and improved therapy is needed. We examined the efficacy of immunomodulation with interferon (IFN)-gamma alone or in combination with a suboptimal regimen of amphotericin B for the treatment of primary systemic murine histoplasmosis. In the first study, BALB/c mice were infected with Histoplasma capsulatum G217B and treated with 10(5) U of IFN given every other day either preinfection and postinfection or only postinfection, alone or in combination with amphotericin B. IFN alone given subcutaneously (s.c.) postinfection prolonged survival over untreated controls (P < 0.01), whereas intravenous (i.v.) administration was ineffective. All combination regimens and amphotericin B alone significantly prolonged survival (P < 0.0001). The combination regimens of amphotericin B and IFN i.v. (pre- and postinfection) or IFN s.c. (postinfection) reduced the fungal burden in the liver and spleen; the latter regimen had superior efficacy in the spleen (P < 0.05) to either amphotericin B or IFN alone. After infection with a low-challenge inoculum, IFN given s.c. (pre- and postinfection) alone caused a significant reduction in fungal burden in the spleen (P < 0.001). In an acutely lethal model, combination regimens of IFN s.c. or i.v. and amphotericin B again prolonged survival (P < 0.01-0.001), with amphotericin B plus IFN given s.c. (pre- and postinfection) superior to all regimens (P < 0.05-0.01). This regimen also showed enhanced efficacy in causing the reduction of fungal burden in the spleen (P < 0.05). These results indicate that IFN in combination with AmB shows enhanced efficacy in the treatment of systemic histoplasmosis and support the potential utility of IFN as an adjunctive therapy.  相似文献   

20.
We investigated a broad spectrum of immunoactive mediators in a mouse model of influenza. ICR mice (4-5 wk old) that were infected with a 10 LD50 dose of influenza A/PR8/34 virus died after 6 days without evidence of bacterial superinfection. Maximal virus titers were reached by day 2 postinfection, whereas the multifocal pneumonia with mononuclear cell infiltration reached its maximum at the end of infection. We measured the cytokines IL-1 alpha, IL-1 beta, IL-2, IL-3, IL-4, IL-6, IFN-gamma, TNF-alpha, granulocyte (G)/macrophage (M)-CSF, G-CSF, M-CSF, and the lipid mediators leukotriene B4 and platelet-activating factor in the cellfree bronchoalveolar lavage fluid of mice during infection. We found an early increase of IL-1 alpha, IL-1 beta, IL-6, TNF-alpha, GM-CSF, IFN-gamma, and leukotriene B4. Levels of these factors peaked between 36 h and day 3 postinfection, with the exception of IL-6 that remained at elevated levels throughout infection. G-CSF and M-CSF increased slowly and reached a maximum by day 5 postinfection. We were unable to detect IL-2, IL-3, or IL-4. PAF remained at the same level throughout infection. Our results suggest that lung-resident cells, and possibly the alveolar macrophages, participate actively in the onset of the inflammatory response against the invading virus. The inability to detect the T cell products IL-2, IL-3, and IL-4 was unexpected considering the role of T cells in the elimination of the virus in infected mice. Our observation confirms thus earlier findings about the inability of specific T cell clones to elicit an unspecific antiviral effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号