首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Thiophosphorylation provides a metabolically stable, chemically reactive phosphorylation analogue for analyzing the phosphoproteome in vitro and in vivo. We developed a MALDI-TOF-MS based assay for optimizing thiophosphopeptide production by a kinase even in the presence of Mg(2+) and ATP. We found that Abl kinase thiophosphorylation rates can be "rescued" using Mn(2+) in the presence of Mg(2+). Under our ideal conditions, titration of Mn(2+) and ATPgammaS in the presence of Mg(2+) allowed relatively rapid, highly specific thiophosphorylation by Abl tyrosine kinase, both as purified enzyme and in complex cell extracts.  相似文献   

4.
5.
6.
7.
The effects of Mg(2+) and K(+) ions on the self-splicing inhibition of the td (thymidylate synthase gene) intron RNA by spectinomycin were investigated. The maximum splicing activity occurred at 20 mM KCl. The K(m) and V(max) values for GTP in the presence of 5 mM Mg(2+) are 2.25 microM and 0.55 min(-1), whereas those for GTP both in the presence of 5 mM Mg(2+) and 5 mM K(+) are 1.23 microM and 0. 46 min(-1), respectively. Spectinomycin at 10 mM concentration inhibited the splicing by about 10%, but at 20 mM concentration, the splicing rate was inhibited by about 63%. The splicing inhibition by the low concentration of spectinomycin was overcome markedly as the concentration of Mg(2+) ion was raised. At 30 mM spectinomycin, however, the splicing inhibition was not significantly affected by increasing the concentration of Mg(2+). A similar activation of the splicing rate was observed as the concentration of K(+) ion was increased. The concentration of K(+) ion required for the normal recovery of the splicing was much higher than that of Mg(2+) ion. Unlike Mg(2+) ion, 30 mM K(+) ion effectively alleviated the splicing inhibition by spectinomycin at its high concentration. The results indicate that K(+) and Mg(2+) ions may show mechanistically different interactions with spectinomycin in the self-splicing reaction of the td intron RNA.  相似文献   

8.
9.
Calcium- and integrin-binding protein (CIB) is a small EF-hand calcium-binding protein that is involved in hemostasis through its interaction with the alphaIIb cytoplasmic domain of integrinalphaIIbbeta(3). We have previously demonstrated that CIB lacks structural stability in the absence of divalent metal ions but that it acquires a well-folded conformation upon addition of Ca(2+) or Mg(2+). Here, we have used fluorescence spectroscopy, NMR spectroscopy, and isothermal titration calorimetry to demonstrate that both Ca(2+)-bound CIB (Ca(2+)-CIB) and the Mg(2+)-bound protein (Mg(2+)-CIB) bind with high affinity and through a similar mechanism to alphaIIb cytoplasmic domain peptides, but that metal-free CIB (apo-CIB) binds in a different manner. The interactions are thermodynamically distinct for Ca(2+)-CIB and Mg(2+)-CIB, but involve hydrophobic interactions in each case. Since the Mg(2+) concentration inside the cell is sufficient to saturate CIB at all times, our results imply that CIB would be capable of binding to the alphaIIb cytoplasmic domain independent of an intracellular Ca(2+) stimulus in vivo. This raises the question of whether CIB can act as a Ca(2+) sensor in alphaIIbbeta(3) signaling or if other regulatory mechanisms such as fibrinogen-induced conformational changes in alphaIIbbeta(3), post-translational modifications, or the binding of other accessory proteins mediate the interactions between CIB and alphaIIbbeta(3). Differences in NMR spectra do suggest, however, that Ca(2+)-binding to the Mg(2+)- CIB-alphaIIb complex induces subtle structural changes that could further modulate the activity of alphaIIbbeta(3).  相似文献   

10.
Fatty acid-biosynthetic activity in rat liver cytosol fractions is much greater when the bivalent cation in the assay system is Mn(2+) than when it is Mg(2+). This difference between bivalent cations can be abolished if the cytosol fractions are preincubated with isocitrate and the bivalent cation for 30min before assay of fatty acid-biosynthetic activity. In a search for the biochemical basis of this phenomenon, the following differences between Mg(2+) and Mn(2+) were established: (1) Mn(2+) promotes acetyl-CoA carboxylase activity of the protomeric form of the enzyme under conditions in which Mg(2+) does not; (2) Mn(2+)+ATP have little inhibitory effect on the polymerization of acetyl-CoA carboxylase whereas Mg(2+)+ATP are markedly inhibitory; (3) under conditions in which utilization of malonyl-CoA in condensation reactions is prevented, the steady-state concentration of malonyl-CoA formed by a cytosol fraction is much greater with Mn(2+) than with Mg(2+). The role that each of these specific differences between Mn(2+) and Mg(2+) might play in causing liver cytosol preparations to have greater fatty acid-biosynthetic activity in the presence of Mn(2+) is discussed.  相似文献   

11.
12.
13.
14.
1. The conditions affecting the activity of RNA polymerase in isolated rat liver nuclei were studied with Mg(2+) or Mn(2+) as activating ions. 2. The enzyme assayed with Mg(2+) and at low ionic strength is saturated by a lower concentration of nucleotide substrates than if assayed with Mn(2+) at low ionic strength or with either ion at high ionic strength. 3. At low and at high ionic strength the incorporation of AMP is affected in a similar way by variations in the temperature of incubation. Preincubation at 37 degrees impairs the AMP incorporation. 4. Heparin stimulates the RNA polymerase activity in the presence of Mn(2+). 5. Both ammonium sulphate and heparin ;restart' the reaction if added after 15min., the effect being more marked with ammonium sulphate than with heparin, and also more marked in the presence of Mn(2+) than of Mg(2+). 6. alpha-Amanitin abolishes the effect of ammonium sulphate and of heparin.  相似文献   

15.
FT Senguen  Z Grabarek 《Biochemistry》2012,51(31):6182-6194
Calmodulin (CaM), a member of the EF-hand superfamily, regulates many aspects of cell function by responding specifically to micromolar concentrations of Ca(2+) in the presence of an ~1000-fold higher concentration of cellular Mg(2+). To explain the structural basis of metal ion binding specificity, we have determined the X-ray structures of the N-terminal domain of calmodulin (N-CaM) in complexes with Mg(2+), Mn(2+), and Zn(2+). In contrast to Ca(2+), which induces domain opening in CaM, octahedrally coordinated Mg(2+) and Mn(2+) stabilize the closed-domain, apo-like conformation, while tetrahedrally coordinated Zn(2+) ions bind at the protein surface and do not compete with Ca(2+). The relative positions of bound Mg(2+) and Mn(2+) within the EF-hand loops are similar to those of Ca(2+); however, the Glu side chain at position 12 of the loop, whose bidentate interaction with Ca(2+) is critical for domain opening, does not bind directly to either Mn(2+) or Mg(2+), and the vacant ligand position is occupied by a water molecule. We conclude that this critical interaction is prevented by specific stereochemical constraints imposed on the ligands by the EF-hand β-scaffold. The structures suggest that Mg(2+) contributes to the switching off of calmodulin activity and possibly other EF-hand proteins at the resting levels of Ca(2+). The Mg(2+)-bound N-CaM structure also provides a unique view of a transiently bound hydrated metal ion and suggests a role for the hydration water in the metal-induced conformational change.  相似文献   

16.
In vitro extracellular Mg(2+) concentration ([Mg(2+)](0)) produces endothelium-dependent and endothelium-independent relaxations in rat aorta in a concentration-dependent manner. These relaxant effects of Mg(2+) on intact rat aortic rings, but not denuded rat aortic rings, were suppressed by either N(G)-monomethyl-L-arginine (L-NMMA), N(omega)-nitro-L-arginine methyl ester (L-NAME), or methylene blue. The inhibitory effects of L-NMMA and L-NAME could be reversed partly by L-arginine. [Mg(2+)](0)-induced dilatation in vivo in rat mesenteric arterioles and venules was almost completely inhibited by N(G)-nitro-L-arginine and L-NMMA. Removal of extracellular Ca(2+) concentration ([Ca(2+)](0)) or buffering intracellular Ca(2+) concentration in endothelial cells, with 10 microM 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, markedly attenuated the relaxant effects of Mg(2+). Mg(2+) produced nitric oxide (NO) release from the intact aortic rings in a concentration-dependent manner. Removal of [Ca(2+)](0) diminished the increased NO release induced by elevated levels of [Mg(2+)](0). In vivo infusion of increasing doses (1-30 microM/min) of MgSO(4), directly into the femoral veins of anesthetized rats, elicited significant concentration-dependent sustained increases in serum total Mg and concomitant decreases in arterial blood pressure. Before and after employment of various doses of MgSO(4), intravenous administration of either L-NMMA (10 mg/kg) or L-NAME (10 mg/kg) increased (i.e., reversed) the MgSO(4)-lowered blood pressure markedly, and intravenous injection of L-arginine restored partially the increased blood pressure effects of both L-NMMA and L-NAME. Our results suggest that 1) small blood vessels are very dependent on NO release for Mg(2+) dilatations and 2) the endothelium-dependent relaxation induced by extracellular Mg(2+) is mediated by release of endothelium-derived relaxing factor-NO from the endothelium, and requires Ca(2+) and formation of guanosine 3',5'-cyclic monophosphate.  相似文献   

17.
CorA is a family of divalent cation transporters ubiquitously present in bacteria and archaea. Although CorA can transport both Mg(2+) and Co(2+) almost equally well, its main role has been suggested to be that of primary Mg(2+) transporter of prokaryotes and hence the regulator of Mg(2+) homeostasis. The reason is that the affinity of CorA for Co(2+) is relatively low and thus considered non-physiological. Here, we show that Thermotoga maritima CorA (TmCorA) is incapable of regulating the Mg(2+) homeostasis and therefore cannot be the primary Mg(2+) transporter of T. maritima. Further, our in vivo experiments confirm that TmCorA is a highly selective Co(2+) transporter, as it selects Co(2+) over Mg(2+) at >100 times lower concentrations. In addition, we present data that show TmCorA to be extremely thermostable in the presence of Co(2+). Mg(2+) could not stabilize the protein to the same extent, even at high concentrations. We also show that addition of Co(2+), but not Mg(2+), specifically induces structural changes to the protein. Altogether, these data show that TmCorA has the role of being the transporter of Co(2+) but not Mg(2+). The physiological relevance and requirements of Co(2+) in T. maritima is discussed and highlighted. We suggest that CorA may have different roles in different organisms. Such functional diversity is presumably a reflection of minor, but important structural differences within the CorA family that regulate the gating, substrate selection, and transport.  相似文献   

18.
Trans-cleaving hammerheads with discontinuous or extended stem I and with tertiary stabilizing motifs (TSMs) have been tested previously against short RNA substrates in vitro at low Mg(2+) concentration. However, the potential of these ribozymes for targeting longer and structured RNAs in vitro and in vivo has not been examined. Here, we report the in vitro cleavage of short RNAs and of a 464-nt highly structured RNA from potato spindle tuber viroid (PSTVd) by hammerheads with discontinuous and extended formats at submillimolar Mg(2+). Under these conditions, hammerheads derived from eggplant latent viroid and peach latent mosaic viroid (PLMVd) with discontinuous and extended formats, respectively, where the most active. Furthermore, a PLMVd-derived hammerhead with natural TSMs showed activity in vivo against the same long substrate and interfered with systemic PSTVd infection, thus reinforcing the idea that this class of ribozymes has potential to control pathogenic RNA replicons.  相似文献   

19.
Nucleoside base modifications can alter the structures, dynamics, and metal ion binding properties of transfer RNA molecules and are important for accurate aminoacylation and for maintaining translational fidelity and efficiency. The unmodified anticodon stem-loop from Escherichia coli tRNA(Phe) forms a trinucleotide loop in solution, but Mg(2+) and dimethylallyl modification of A(37) N6 disrupt the loop conformation and increase the mobility of the loop and loop-proximal nucleotides. We have used NMR spectroscopy to investigate the binding and structural effects of multivalent cations on the unmodified and dimethylallyl-modified anticodon stem-loops from E. coli tRNA(Phe). The divalent cation binding sites were probed using Mn(2+) and Co(NH(3))(6)(3+). These ions bind along the major groove of the stem and associate with the anticodon loop on the major groove side in a nonspecific manner. Co(NH(3))(6)(3+) stabilizes the U-turn conformation of the loop in the dimethylallyl-modified molecule, and the chemical shift changes that accompany Co(NH(3))(6)(3+) binding are similar to those observed with the addition of Mg(2+). The base-phosphate and base-2'-OH hydrogen bonds that characterize the UNR U-turn motif lead to spectral signatures in the form of unusual (15)N and (1)H chemical shifts and reduced solvent exchange of the U(33) 2'-OH and N3H protons. The unmodified molecule also displays spectral features of the U-turn fold in the presence of Co(NH(3))(6)(3+), but the loop has additional conformations and is dynamic. The results indicate that charge neutralization by a polyvalent cation is sufficient to promote formation of the U-turn fold. However, base modification is necessary to destabilize competing alternative conformers even for a purine-rich loop sequence that is predicted to have strongly favorable base stacking energy.  相似文献   

20.
Mg(2+) plays important roles in numerous cellular functions. Mitochondria take part in intracellular Mg(2+) regulation and the Mg(2+) concentration in mitochondria affects the synthesis of ATP. However, there are few methods to observe Mg(2+) in mitochondria in intact cells. Here, we have developed a novel Mg(2+)-selective fluorescent probe, KMG-301, that is functional in mitochondria. This probe changes its fluorescence properties solely depending on the Mg(2+) concentration in mitochondria under physiologically normal conditions. Simultaneous measurements using this probe together with a probe for cytosolic Mg(2+), KMG-104, enabled us to compare the dynamics of Mg(2+) in the cytosol and in mitochondria. With this method, carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP)-induced Mg(2+) mobilization from mitochondria to the cytosol was visualized. Although a FCCP-induced decrease in the Mg(2+) concentration in mitochondria and an increase in the cytosol were observed both in differentiated PC12 cells and in hippocampal neurons, the time-courses of concentration changes varied with cell type. Moreover, the relationship between mitochondrial Mg(2+) and Parkinson's disease was analyzed in a cellular model of Parkinson's disease by using the 1-methyl-4-phenylpyridinium ion (MPP(+)). A gradual decrease in the Mg(2+) concentration in mitochondria was observed in response to MPP(+) in differentiated PC12 cells. These results indicate that KMG-301 is useful for investigating Mg(2+) dynamics in mitochondria. All animal procedures to obtain neurons from Wistar rats were approved by the ethical committee of Keio University (permit number is 09106-(1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号