首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In pathological conditions such as ischemic cardiomyopathy and heart failure, differentiation of fibroblasts into myofibroblasts may result in myocyte-fibroblast electrical coupling via gap junctions. We hypothesized that myofibroblast proliferation and increased heterocellular coupling significantly alter two-dimensional cardiac wave propagation and reentry dynamics. Co-cultures of myocytes and myofibroblasts from neonatal rat ventricles were optically mapped using a voltage-sensitive dye during pacing and sustained reentry. The myofibroblast/myocyte ratio was changed systematically, and junctional coupling of the myofibroblasts was reduced or increased using silencing RNAi or adenoviral overexpression of Cx43, respectively. Numerical simulations in two-dimensional models were used to quantify the effects of heterocellular coupling on conduction velocity (CV) and reentry dynamics. In both simulations and experiments, reentry frequency and CV diminished with larger myofibroblast/myocyte area ratios; complexity of propagation increased, resulting in wave fractionation and reentry multiplication. The relationship between CV and coupling was biphasic: an initial decrease in CV was followed by an increase as heterocellular coupling increased. Low heterocellular coupling resulted in fragmented and wavy wavefronts; at high coupling wavefronts became smoother. Heterocellular coupling alters conduction velocity, reentry stability, and complexity of wave propagation. The results provide novel insight into the mechanisms whereby electrical myocyte-myofibroblast interactions modify wave propagation and the propensity to reentrant arrhythmias.  相似文献   

2.
Abnormalities in cardiac gap junction expression have been postulated to contribute to arrhythmias and ventricular dysfunction. We investigated the role of cardiac gap junctions by generating a heart-specific conditional knock-out (CKO) of connexin43 (Cx43), the major cardiac gap junction protein. While the Cx43 CKO mice have normal heart structure and contractile function, they die suddenly from spontaneous ventricular arrhythmias. Because abnormalities in gap junction expression in the diseased heart can be focal, we also generated chimeric mice formed from Cx43-null embryonic stem (ES) cells and wildtype recipient blastocysts. Heterogeneous Cx43 expression in the chimeric mice resulted in conduction defects and depressed contractile function. These novel genetic murine models of Cx43 loss of function in the adult mouse heart define gap junctional abnormalities as a key molecular feature of the arrhythmogenic substrate and an important factor in heart dysfunction.  相似文献   

3.
It is generally accepted that connexin43 (Cx43) is a major constituent of heart and myometrial gap junctions. However, the presence of Cx43 gap junctions in non-pregnant myometrium is still poorly documented. Tissue sections of porcine heart and non-pregnant uterus and myometrial smooth muscle cell cultures were immunostained with monoclonal antibody against Cx43. In the heart, intensive immunostaining was confined to the intercalated discs as previously reported. In the non-pregnant uterus, punctuate immunostaining of Cx43 was seen throughout the myometrium along cell interfaces between myocytes. The expression of Cx43 was sustained in cultured smooth muscle cells isolated from non-pregnant myometrium. Western blotting has detected single isoform of Cx43 in both, cardiac and myometrial tissues. The electrophoretic mobility of porcine heart Cx43 was similar to that of myometrial isoform but different from the pattern of mobility of Cx43 of the rat heart. Hence, porcine myometrium may provide attractive model for studying cellular mechanisms triggering expression of gap junction protein in normal (non-pregnant) uterus.  相似文献   

4.
The conduction of cardiac action potentials depends on the flow of excitation through gap junctions, which are hexameric protein associations of connexins (Cxs). The major Cx reported in the heart is Cx43, although some Cx40 and Cx45 are also present. There is some evidence for altered Cx content in heart failure. In heart failure, conduction is depressed and slowed conduction may contribute to arrhythmogenesis and (or) the maintenance of arrhythmia. Cx content and distribution were determined in ventricular tissues from normal and cardiomyopathic Syrian hamsters, an animal model of heart failure which has reproducible age-specific cardiomyopathy resulting in heart failure and age-matched controls in three groups: young (3-5 weeks), adult (13-18 weeks), and old (>45 weeks). Frozen, unfixed sections of ventricular tissues were immunofluorescently stained using antibodies against Cx43, Cx40, and Cx45. Cx43 was the predominant Cx detected in all samples. In normal hamsters, Cx43 was localized predominantly at the intercalated disc region, while in myopathic myocytes, it was scattered. In Western blots, Cx43 content of normal hamster hearts was highest in the adult hearts compared with young and old hamster hearts. In contrast, Cx43 content was significantly lower in adult cardiomyopathic hamster hearts compared with all other groups. The alterations of content and distribution of gap junction Cx43 may contribute to diminished conduction, pump function, and arrhythmogenesis in heart failure.  相似文献   

5.
Cytoskeletal elements may be important in connexin transport to the cell surface, cell surface gap junction plaque formation and/or gap junction internalization. In this study, fluorescence recovery after photobleaching was used to examine the role of microfilaments and microtubules in the recruitment and coalescence of green fluorescent protein-tagged Cx43 (Cx43-GFP) or yellow fluorescent tagged-Cx26 (Cx26-YFP) into gap junctions in NRK cells. In untreated cells, both Cx26-YFP and Cx43-GFP were recruited into gap junctions within photobleached areas of cell-cell contact within 2 hrs. However, disruption of microfilaments with cytochalasin B inhibited the recruitment and assembly of both Cx26-YFP and Cx43-GFP into gap junctions within photobleached areas. Surprisingly, disruption of microtubules with nocodazole inhibited the recruitment of Cx43-GFP into gap junctions but had limited effect on the transport and clustering of Cx26-YFP into gap junctions within the photobleached regions of cell-cell contact. These results suggest that the recruitment of Cx43-GFP and Cx26-YFP to the cell surface or their lateral clustering into gap junctions plaques is dependent in part on the presence of intact actin microfilaments while Cx43-GFP was more dependent on intact microtubules than Cx26-YFP.  相似文献   

6.
Gap junction channels in ventricular myocardium are required for electrical and metabolic coupling between cardiac myocytes and for normal cardiac pump function. Although much is known about expression patterns and remodeling of cardiac connexin(Cx)43, little is known about the less abundant Cx45, which is required for embryonic development and viability, is downregulated in adult hearts, and is pathophysiologically upregulated in human end-stage heart failure. We applied quantitative immunoblotting and immunoprecipitation to native myocardial extracts, immunogold electron microscopy to cardiac tissue and membrane sections, electrophysiological recordings to whole hearts, and high-resolution tandem mass spectrometry to Cx45 fusion protein, and developed two new tools, anti-Cx45 antisera and Cre(+);Cx45 floxed mice, to facilitate characterization of Cx45 in adult mammalian hearts. We found that Cx45 represents 0.3% of total Cx protein (predominantly 200 fmol Cx43 protein/μg ventricular protein) and colocalizes with Cx43 in native ventricular gap junctions, particularly in the apex and septum. Cre(+);Cx45 floxed mice express 85% less Cx45, but do not exhibit overt electrophysiologic abnormalities. Although the basal phosphorylation status of native Cx45 remains unknown, CaMKII phosphorylates 8 Ser/Thr residues in Cx45 in vitro. Thus, although downregulation of Cx45 does not produce notable deficits in electrical conduction in adult, disease-free hearts, Cx45 is a target of the multifunctional kinase CaMKII, and the phosphorylation status of Cx45 and the role of Cx43/Cx45 heteromeric gap junction channels in both normal and diseased hearts merits further investigation.  相似文献   

7.
In the heart, the intercellular geometry of myocyte coupling by Connexin43-gap junctions (Cx43-gjs) is a determinant of normal and abnormal patterns of propagation of electrical excitation. ZO-1 has been suggested to play a role in determining the pattern of intercellular coupling between myocytes. We therefore investigated the co-distribution of Cx43 with ZO-1 in ventricular myocytes of the adult rat using quantitative immunoconfocal microscopy. Our data indicates that low-moderate levels of co-immunolocalization occur between Cx43 and ZO-1 in normal ventricular myocardium. However, rapid and significant increases in relative co-localization occur between Cx43 and ZO-1 following dissociation of myocytes from ventricular myocardium-a treatment inducing internalization of Cx43-gjs. This increased relative co-localization may represent an increase in Cx43-ZO-1 interaction, suggesting a role for ZO-1 in the remodeling of myocardial Cx43-gjs. A more comprehensive study, including immuno-precipitation and immunoelectron microscopy analyses has been carried out (Barker et al. Circ. Res., in press, 2002 and as presented to the 2001 International GJ Conference). This study further assesses the biological relevance of the increased association between ZO-1 and Cx43 accompanying internalization of Cx43-gjs.  相似文献   

8.
In the heart, the intercellular geometry of myocyte coupling by Connexin43-gap junctions (Cx43-gjs) is a determinant of normal and abnormal patterns of propagation of electrical excitation. ZO-1 has been suggested to play a role in determining the pattern of intercellular coupling between myocytes. We therefore investigated the co-distribution of Cx43 with ZO-1 in ventricular myocytes of the adult rat using quantitative immunoconfocal microscopy. Our data indicates that low-moderate levels of co-immunolocalization occur between Cx43 and ZO-1 in normal ventricular myocardium. However, rapid and significant increases in relative co-localization occur between Cx43 and ZO-1 following dissociation of myocytes from ventricular myocardium--a treatment inducing internalization of Cx43-gjs. This increased relative co-localization may represent an increase in Cx43-ZO-1 interaction, suggesting a role for ZO-1 in the remodeling of myocardial Cx43-gjs. A more comprehensive study, including immunoprecipitation and immunoelectron microscopy analyses has been carried out (Barker et al. Circ. Res., in press, 2002 and as presented to the 2001 International GJ Conference). This study further assesses the biological relevance of the increased association between ZO-1 and Cx43 accompanying internalization of Cx43-gjs.  相似文献   

9.
In the heart, the intercellular geometry of myocyte coupling by Connexin43-gap junctions (Cx43-gjs) is a determinant of normal and abnormal patterns of propagation of electrical excitation. ZO-1 has been suggested to play a role in determining the pattern of intercellular coupling between myocytes. We therefore investigated the co-distribution of Cx43 with ZO-1 in ventricular myocytes of the adult rat using quantitative immunoconfocal microscopy. Our data indicates that low-moderate levels of co-immunolocalization occur between Cx43 and ZO-1 in normal ventricular myocardium. However, rapid and significant increases in relative co-localization occur between Cx43 and ZO-1 following dissociation of myocytes from ventricular myocardium-a treatment inducing internalization of Cx43-gjs. This increased relative co-localization may represent an increase in Cx43-ZO-1 interaction, suggesting a role for ZO-1 in the remodeling of myocardial Cx43-gjs. A more comprehensive study, including immuno-precipitation and immunoelectron microscopy analyses has been carried out (Barker et al. Circ. Res., in press, 2002 and as presented to the 2001 International GJ Conference). This study further assesses the biological relevance of the increased association between ZO-1 and Cx43 accompanying internalization of Cx43-gjs.  相似文献   

10.
Gap junction channels in ventricular myocardium are required for electrical and metabolic coupling between cardiac myocytes and for normal cardiac pump function. Although much is known about expression patterns and remodeling of cardiac connexin(Cx)43, little is known about the less abundant Cx45, which is required for embryonic development and viability, is downregulated in adult hearts, and is pathophysiologically upregulated in human end-stage heart failure. We applied quantitative immunoblotting and immunoprecipitation to native myocardial extracts, immunogold electron microscopy to cardiac tissue and membrane sections, electrophysiological recordings to whole hearts, and high-resolution tandem mass spectrometry to Cx45 fusion protein, and developed two new tools, anti-Cx45 antisera and Cre+;Cx45 floxed mice, to facilitate characterization of Cx45 in adult mammalian hearts. We found that Cx45 represents 0.3% of total Cx protein (predominantly 200 fmol Cx43 protein/μg ventricular protein) and colocalizes with Cx43 in native ventricular gap junctions, particularly in the apex and septum. Cre+;Cx45 floxed mice express 85% less Cx45, but do not exhibit overt electrophysiologic abnormalities. Although the basal phosphorylation status of native Cx45 remains unknown, CaMKII phosphorylates 8 Ser/Thr residues in Cx45 in vitro. Thus, although downregulation of Cx45 does not produce notable deficits in electrical conduction in adult, disease-free hearts, Cx45 is a target of the multifunctional kinase CaMKII, and the phosphorylation status of Cx45 and the role of Cx43/Cx45 heteromeric gap junction channels in both normal and diseased hearts merits further investigation.  相似文献   

11.
The ventricular action potential was applied to paired neonatal murine ventricular myocytes in the dual whole cell configuration. During peak action potential voltages >100 mV, junctional conductance (g(j)) declined by 50%. This transjunctional voltage (V(j))-dependent inactivation exhibited two time constants that became progressively faster with increasing V(j). G(j) returned to initial peak values during action potential repolarization and even exceeded peak g(j) values during the final 5% of repolarization. This facilitation of g(j) was observed <30 mV during linearly decreasing V(j) ramps. The same behavior was observed in ensemble averages of individual gap junction channels with unitary conductances of 100 pS or lower. Immunohistochemical fluorescent micrographs and immunoblots detect prominent amounts of connexin (Cx)43 and lesser amounts of Cx40 and Cx45 proteins in cultured ventricular myocytes. The time dependence of the g(j) curves and channel conductances are consistent with the properties of predominantly homomeric Cx43 gap junction channels. A mathematical model depicting two inactivation and two recovery phases accurately predicts the ventricular g(j) curves at different rates of stimulation and repolarization. Functional differences are apparent between ventricular myocytes and Cx43-transfected N2a cell gap junctions that may result from posttranslational modification. These observations suggest that gap junctions may play a role in the development of conduction block and the genesis and propagation of triggered arrhythmias under conditions of slowed conduction (<10 cm/s).  相似文献   

12.
Gap junction number and size vary widely in cardiac tissues with disparate conduction properties. Little is known about how tissue-specific patterns of intercellular junctions are established and regulated. To elucidate the relationship between gap junction channel protein expression and the structure of gap junctions, we analyzed Cx43 +/- mice, which have a genetic deficiency in expression of the major ventricular gap junction protein, connexin43 (Cx43). Quantitative confocal immunofluorescence microscopy revealed that diminished Cx43 signal in Cx43 +/- mice was due almost entirely to a reduction in the number of individual gap junctions (226 +/- 52 vs. 150 +/- 32 individual gap junctions/field in Cx43 +/+ and +/- ventricles, respectively; P < 0.05). The mean size of an individual gap junction was the same in both groups. Immunofluorescence results were confirmed with electron microscopic morphometry. Thus when connexin expression is diminished, ventricular myocytes become interconnected by a reduced number of large, normally sized gap junctions, rather than a normal number of smaller junctions. Maintenance of large gap junctions may be an adaptive response supporting safe ventricular conduction.  相似文献   

13.
This study examined whether triiodo-L-thyronine (T3) affects the expression of the major intercellular channel protein, connexin-43, and contractile protein alpha-sarcomeric actin. Cultured cardiomyocytes from newborn rats were treated on day three in culture with 10 or 100 nM T3 and examined 48 and 72 h thereafter. Treated and untreated cells were examined by immunofluorescence and electron microscopy. Expression levels of Cx43 and sarcomeric alpha-actin were monitored by Western blot analysis. Immunofluorescence labeling showed cell membrane location of Cx43 in punctuate gap junctions, whereby fluorescence signal area was significantly higher in cultured cardiomyocytes exposed to T3. This correlated with electron microscopical findings showing increased numbers and size of gap junction profiles, as well as with a significant dose-dependent increase of Cx43 expression detected by Western blot. Immunofluorescence of sarcomeric a-actin was enhanced and its expression increased dose- and time-dependently in T3-treated cultured heart myocytes. However, exposure to the higher dosage (100 nM) of T3 caused mild disintegration of sarcomeric a-actin in some myocytes, suggesting an over-dosage. The results indicate that T3 up-regulates Cx43 and accelerates gap junction formation in cultured neonatal cardiomyocytes. They suggest that thyroid status cannot only modulate the mechanical function of cardiomyocytes but also cell-to-cell communication essential for myocardial electrical and metabolic synchronizations.  相似文献   

14.
Mechanisms underlying the initiation and persistence of lethal cardiac rhythms are of significant clinical and scientific interests. Gap junctions are principally involved in forming the electrical connections between myocytes, and changes in distribution, density, and properties are consistent characteristics in arrhythmic heart disease. Therefore, understanding the structure and function of gap junctions during normal and abnormal impulse propagation are essential in the control of arrhythmias. For example, Cx45 is predominately expressed in the specialized myocytes of the impulse generation and conduction system. In both ventricular and atrial human working myocytes, Cx45 is present in very low quantities. However, a reduction in Cx43 coupled with an increased Cx45 protein levels within the ventricles have been observed after myocardial infarction and end-stage heart failure. Cx45 may influence electrical and/or metabolic coupling as a result of pathophysiological overexpression. Our goal was to identify mechanisms that could cause cellular coupling to be different between the cardiac connexins. Based upon the conserved transmembrane and extracellular loop segments, our focus was on identifying features within the divergent cytoplasmic portions. Here, we biophysically characterize the carboxyl-terminal domain of Cx45 (Cx45CT). Purification revealed the possibility of oligomeric species, which was confirmed by analytical ultracentrifugation experiments. Sedimentation equilibrium and circular dichroism studies of different Cx45CT constructs identified one region of α-helical structure (A333-N361) that mediates CT dimerization through hydrophobic contacts. Interestingly, the binding affinity of Cx45CT dimerization is 1000-fold stronger than Cx43CT dimerization. Cx45CT resonance assignments were also used to identify the binding sites and affinities of molecular partners involved in the Cx45 regulation; although none disrupted dimerization, many of these proteins interacted within one intrinsically disordered region (P278-P285). This domain has similarities with other cardiac connexins, and we propose they constitute a master regulatory domain, which contains overlapping molecular partner binding, cis-trans proline isomerization, and phosphorylation sites.  相似文献   

15.
Mechanisms underlying the initiation and persistence of lethal cardiac rhythms are of significant clinical and scientific interests. Gap junctions are principally involved in forming the electrical connections between myocytes, and changes in distribution, density, and properties are consistent characteristics in arrhythmic heart disease. Therefore, understanding the structure and function of gap junctions during normal and abnormal impulse propagation are essential in the control of arrhythmias. For example, Cx45 is predominately expressed in the specialized myocytes of the impulse generation and conduction system. In both ventricular and atrial human working myocytes, Cx45 is present in very low quantities. However, a reduction in Cx43 coupled with an increased Cx45 protein levels within the ventricles have been observed after myocardial infarction and end-stage heart failure. Cx45 may influence electrical and/or metabolic coupling as a result of pathophysiological overexpression. Our goal was to identify mechanisms that could cause cellular coupling to be different between the cardiac connexins. Based upon the conserved transmembrane and extracellular loop segments, our focus was on identifying features within the divergent cytoplasmic portions. Here, we biophysically characterize the carboxyl-terminal domain of Cx45 (Cx45CT). Purification revealed the possibility of oligomeric species, which was confirmed by analytical ultracentrifugation experiments. Sedimentation equilibrium and circular dichroism studies of different Cx45CT constructs identified one region of α-helical structure (A333-N361) that mediates CT dimerization through hydrophobic contacts. Interestingly, the binding affinity of Cx45CT dimerization is 1000-fold stronger than Cx43CT dimerization. Cx45CT resonance assignments were also used to identify the binding sites and affinities of molecular partners involved in the Cx45 regulation; although none disrupted dimerization, many of these proteins interacted within one intrinsically disordered region (P278-P285). This domain has similarities with other cardiac connexins, and we propose they constitute a master regulatory domain, which contains overlapping molecular partner binding, cis-trans proline isomerization, and phosphorylation sites.  相似文献   

16.
Conduction in the heart requires gap junctions. In mammalian ventricular myocytes these consist of connexin43 (Cx43). Hearts of non-hibernating species display conduction disturbances at reduced temperatures. These may exacerbate into lethal arrhythmias. Hibernating species are protected against these arrhythmias by a non-resolved mechanism. To analyze whether the amino acid composition of Cx43 from the hibernating American black bear displays specific features, we cloned the full coding sequence of Ursus americanus Cx43 and compared with that of other (non)hibernating species. UaCx43 displays 99.7% identity to rabbit Cx43 at the amino acid level. No specific features were observed in UaCx43 when compared to previously cloned Cx43 from hibernating and non-hibernating mammals. Phylogenetic tree reconstruction of this and other published full-length Cx43 sequences reveals a very high level of conservation from fish to men. Finally, one of the previously identified six mammalian characteristic amino acids, is not conserved in the black bear.  相似文献   

17.
The assembly of gap junction channels was studied using mammalian cells expressing connexin (Cx) 26, 32 and 43 in which the carboxyl terminus was fused to green, yellow or cyan fluorescent proteins (GFP, YFP, CFP). Intracellular targeting of Cx32-CFP and 43-GFP to gap junctions was disrupted by brefeldin A treatment and resulted in a severe loss of gap junctional intercellular communication reflected by low intercellular dye transfer. Cells expressing Cx43-GFP exposed to nocodazole showed normal targeting to gap junctions and dye transfer. Cx32 and 43 thus appear to be transported and assembled into gap junctions via the classical secretory pathway. In contrast, we found that assembly of Cx26-GFP into functional gap junctions was relatively unaffected by treatment of cells with brefeldin A, but was extremely sensitive to nocodazole treatment. Coexpression of Cx26-YFP and Cx32-CFP indicated a different intracellular distribution that was accentuated in the presence of brefeldin A, with the gap junctions in these cells constructed predominantly of Cx26-YFP. A site specific mutation in the first transmembrane domain that distinguished Cx32 from Cx26 (Cx32128L) resulted in the adoption of the trafficking properties of Cx26 as well as its unusual post-translational membrane integration characteristics. The results indicate that multiple intracellular connexin trafficking routes exist and provide a further mechanism for regulating the connexin composition of gap junctions and thus specificity in intercellular signalling.  相似文献   

18.
The assembly of gap junction channels was studied using mammalian cells expressing connexin (Cx) 26, 32 and 43 in which the carboxyl terminus was fused to green, yellow or cyan fluorescent proteins (GFP, YFP, CFP). Intracellular targeting of Cx32-CFP and 43-GFP to gap junctions was disrupted by brefeldin A treatment and resulted in a severe loss of gap junctional intercellular communication reflected by low intercellular dye transfer. Cells expressing Cx43-GFP exposed to nocodazole showed normal targeting to gap junctions and dye transfer. Cx32 and 43 thus appear to be transported and assembled into gap junctions via the classical secretory pathway. In contrast, we found that assembly of Cx26-GFP into functional gap junctions was relatively unaffected by treatment of cells with brefeldin A, but was extremely sensitive to nocodazole treatment. Coexpression of Cx26-YFP and Cx32-CFP indicated a different intracellular distribution that was accentuated in the presence of brefeldin A, with the gap junctions in these cells constructed predominantly of Cx26-YFP. A site specific mutation in the first transmembrane domain that distinguished Cx32 from Cx26 (Cx32128L) resulted in the adoption of the trafficking properties of Cx26 as well as its unusual post-translational membrane integration characteristics. The results indicate that multiple intracellular connexin trafficking routes exist and provide a further mechanism for regulating the connexin composition of gap junctions and thus specificity in intercellular signalling.  相似文献   

19.
Abnormalities in cardiac gap junction expression have been postulated to contribute to arrhythmias and ventricular dysfunction. We investigated the role of cardiac gap junctions by generating a heart-specific conditional knock-out (CKO) of connexin43 (Cx43), the major cardiac gap junction protein. While the Cx43 CKO mice have normal heart structure and contractile function, they die suddenly from spontaneous ventricular arrhythmias. Because abnormalities in gap junction expression in the diseased heart can be focal, we also generated chimeric mice formed from Cx43-null embryonic stem (ES) cells and wildtype recipient blastocysts. Heterogeneous Cx43 expression in the chimeric mice resulted in conduction defects and depressed contractile function. These novel genetic murine models of Cx43 loss of function in the adult mouse heart define gap junctional abnormalities as a key molecular feature of the arrhythmogenic substrate and an important factor in heart dysfunction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号