首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants   总被引:2,自引:0,他引:2  
Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.  相似文献   

3.
4.
Long noncoding RNAs (lncRNAs) are a heterogeneous class of noncoding RNAs that have gained increasing attention due to their vital roles in the regulation of diverse cellular processes. Because lncRNAs are generally expressed at low levels, are poorly conserved, and can act via diverse mechanisms, investigating the molecular mechanisms by which lncRNAs act is challenging. Similar to mRNAs, lncRNAs bind to RNA-binding proteins (RBPs) and in some cases, have been shown to regulate the activity of the RBP they bind to. Furthermore, recent studies have shown that some lncRNAs directly bind to a specific RBP that, in turn, forms a complex with other proteins that mediate the effects of the lncRNA. We termed such RBPs as adaptor proteins because they function as adaptors to recruit other proteins that indirectly associate with the lncRNA. Here, we discuss the emerging roles of adaptor proteins in lncRNA function and propose mechanistic scenarios and strategies to identify adaptor proteins that could play vital roles in the biology of a lncRNA. This article is part of a Special Issue entitled: ncRNA in control of gene expression edited by Kotb Abdelmohsen.  相似文献   

5.
6.
小麦长链非编码RNA的预测及功能分析   总被引:1,自引:0,他引:1       下载免费PDF全文
生物体有部分基因被转录成RNA,但是不编码相应蛋白质,称为长链非编码RNA(lncRNA)。它们参与基因的表观调控,这一过程对动物、植物的生长发育都有重要作用,但是,目前植物中发现和研究的lncRNA较少。为了研究lncRNA在植物中的功能,本研究建立了基于小麦全长cDNA的lncRNA识别程序。从6162条小麦全长cDNA中发现了231条lncRNAs,并从中鉴定出两个新miRNAs,这表明lncRNAs可以通过形成miRNAs前体基因形成其功能。此外,通过序列富集分析,我们从小麦lncRNAs中鉴定出三个保守的调控元件,结果显示小麦lncRNAs可能通过和其它蛋白质或DNA等分子作用,进而参与小麦生长、发育等过程的调控,这些结果对进一步研究植物体内的lncRNA的功能和作用机制具有重要意义。  相似文献   

7.
8.
9.
DNA double-strand breaks can seriously damage the genetic information that organisms depend on for survival and reproduction. Therefore, cells require a robust DNA damage response mechanism to repair the damaged DNA. Homologous recombination (HR) allows error-free repair, which is key to maintaining genomic integrity. Long non-coding RNAs (lncRNAs) are RNA molecules that are longer than 200 nucleotides. In recent years, a number of studies have found that lncRNAs can act as regulators of gene expression and DNA damage response mechanisms, including HR repair. Moreover, they have significant effects on the occurrence, development, invasion and metastasis of tumor cells, as well as the sensitivity of tumors to radiotherapy and chemotherapy. These studies have therefore begun to expose the great potential of lncRNAs for clinical applications. In this review, we focus on the regulatory roles of lncRNAs in HR repair.  相似文献   

10.
11.
Precise regulation of gene expression is crucial for living cells to adapt for survival in diverse environmental conditions. Among the common cellular regulatory mechanisms, RNA-based regulators play a key role in all domains of life. Discovery of regulatory RNAs have made a paradigm shift in molecular biology as many regulatory functions of RNA have been identified beyond its canonical roles as messenger, ribosomal and transfer RNA. In the complex regulatory RNA network, riboswitches, small RNAs, and RNA thermometers can be identified as some of the key players. Herein, we review the discovery, mechanism, and potential therapeutic use of these classes of regulatory RNAs mainly found in bacteria. Being highly adaptive organisms that inhabit a broad range of ecological niches, bacteria have adopted tight and rapid-responding gene regulation mechanisms. This review aims to highlight how bacteria utilize versatile RNA structures and sequences to build a sophisticated gene regulation network.  相似文献   

12.
13.
14.
15.
16.
17.
18.
柏庆然  宋旭 《生命科学》2010,(7):641-648
功能基因组学的飞速发展将越来越多的目光引向了对非编码转录产物功能的研究。在人的转录组中,存在着一类长度大于200nt,但并不具备编码蛋白质功能的基因转录产物,即长非编码RNA(long noncoding RNA,lncRNA)。相比于小分子RNA,它们仍是目前基因组转录产物中较为陌生的部分。在整个基因组转录产物中,lncRNA所占的比例远远超过编码RNA所占的比例。不同于编码RNA,lncRNA的保守性要差得多,然而在其分子内部,却含有较为保守的局部区段,且其表达具有时空特异性,这些现象都提示了lncRNA具有重要的生理生化功能。越来越多的研究表明,lncRNA在基因表达调控方面发挥着十分重要的作用,与物种进化、胚胎发育、物质代谢以及肿瘤发生等都有着紧密的联系,其功能的深入研究将使目前对细胞的结构网络和调控网络的认识带来革命性的变化,具有不可估量的科学和临床价值。该文将着重讨论lncRNA在不同层面上对基因表达的调控机制以及在肿瘤发生发展中的意义。  相似文献   

19.
20.
非编码RNA(non-coding RNA,ncRNA)是生物体内普遍存在,且对生命活动具有重要调控作用的生物分子.以微RNA(microRNA,miRNA)和长链非编码RNA(long non coding RNA,lncRNA)为代表的ncRNA分子在肿瘤发生和发展过程中都有重要的作用.越来越多研究发现,miRNA和lncRNA之间的关系是非常密切的,某些lncRNA(如H19和BIC)可以作为miRNA的前体,通过加工成miRNA而发挥作用.有些miRNA通过作用于lncRNA影响肿瘤的发生(如:miR-129与MEG3,let-7与H19);同样地,有些lncRNA通过作用于miRNA影响肿瘤的发生(如:HULC与miR-372,PTCSC3与miR-574-5p,ciRS-7与miR-7,Sry与miR-138).miRNA与lncRNA之间既可以直接相互作用,也可以通过其它分子(特别是蛋白质或蛋白质复合物)间接地影响着肿瘤的发生和发展.揭示miRNA和lncRNA相互作用在肿瘤发生中的作用可以为肿瘤的诊断和治疗提供新思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号