首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RAMPs (1-3) are single transmembrane accessory proteins crucial for plasma membrane expression, which also determine receptor phenotype of various G-protein-coupled receptors. For example, adrenomedullin receptors are comprised of RAMP2 or RAMP3 (AM1R and AM2R, respectively) and calcitonin receptor-like receptor (CRLR), while a CRLR heterodimer with RAMP1 yields a calcitonin gene-related peptide receptor. The major aim of this study was to determine the role of RAMPs in receptor trafficking. We hypothesized that a PDZ type I domain present in the C terminus of RAMP3, but not in RAMP1 or RAMP2, leads to protein-protein interactions that determine receptor trafficking. Employing adenylate cyclase assays, radioligand binding, and immunofluorescence microscopy, we observed that in HEK293 cells the CRLR-RAMP complex undergoes agonist-stimulated desensitization and internalization and fails to resensitize (i.e. degradation of the receptor complex). Co-expression of N-ethylmaleimide-sensitive factor (NSF) with the CRLR-RAMP3 complex, but not CRLR-RAMP1 or CRLR-RAMP2 complex, altered receptor trafficking to a recycling pathway. Mutational analysis of RAMP3, by deletion and point mutations, indicated that the PDZ motif of RAMP3 interacts with NSF to cause the change in trafficking. The role of RAMP3 and NSF in AM2R recycling was confirmed in rat mesangial cells, where RNA interference with RAMP3 and pharmacological inhibition of NSF both resulted in a lack of receptor resensitization/recycling after agonist-stimulated desensitization. These findings provide the first functional difference between the AM1R and AM2R at the level of post-endocytic receptor trafficking. These results indicate a novel function for RAMP3 in the post-endocytic sorting of the AM-R and suggest a broader regulatory role for RAMPs in receptor trafficking.  相似文献   

2.
Receptor activity-modifying proteins (RAMPs 1-3) are single transmembrane accessory proteins critical to various G-protein coupled receptors for plasma membrane expression and receptor phenotype. A functional receptor for the vasodilatory ligand, adrenomedullin (AM), is comprised of RAMP2 or RAMP3 and calcitonin receptor-like receptor (CRLR). It is now known that RAMP3 protein-protein interactions regulate the recycling of the AM2 receptor. The major aim of this study was to identify other interaction partners of RAMP3 and determine their role in CRLR-RAMP3 trafficking. Trafficking of G-protein-coupled receptors has been shown to be regulated by the Na+/H+ exchanger regulatory factor-1 (NHERF-1), an adaptor protein containing two tandem PSD-95/Discs-large/ZO-1 homology (PDZ) domains. In HEK 293T cells expressing the AM2 receptor, the complex undergoes agonist-induced desensitization and internalization. However, in the presence of NHERF-1, although the AM receptor (CRLR/RAMP3) undergoes desensitization, the internalization of the receptor complex is blocked. Overlay assays and mutational analysis indicated that RAMP3 and NHERF-1 interact via a PDZ type I domain on NHERF-1. The internalization of the CRLR-RAMP complex was not affected by NHERF-1 when CRLR was co-expressed with RAMP1 or RAMP2. Mutation of the ezrin/radixin/moesin (ERM) domain on NHERF-1 indicated that NHERF-1 inhibits CRLR/RAMP3 complex internalization by tethering the complex to the actin cytoskeleton. When examined in a primary culture of human proximal tubule cells endogenously expressing the CRLR-RAMP3 complex and NHERF-1, the CRLR-RAMP complex desensitizes but is unable to internalize upon agonist stimulation. Knock-down of either RAMP3 or NHERF-1 by RNA interference technology enabled agonist-induced internalization of the CRLR-RAMP complex. These results, using both endogenous and overexpressed cellular models, indicate a novel function for NHERF-1 and RAMP3 in the internalization of the AM receptor and suggest additional regulatory mechanisms for receptor trafficking.  相似文献   

3.
When co-expressed with a receptor activity-modifying protein (RAMP) accessory protein, calcitonin receptor-like receptor (CRLR) can function as a calcitonin gene-related peptide receptor (CRLR-RAMP1) or an adrenomedullin (AM) receptor (CRLR-RAMP2/3). Here we report on the structural domain(s) involved in selective AM binding that were examined using various RAMP chimeras and deletion mutants. Co-expression of chimeric RAMPs and CRLR in HEK293 cells revealed that residues 77-101, situated in the extracellular N-terminal domain of human RAMP2 (hRAMP2), were crucial for selective AM-evoked cAMP production. More detailed analysis showed that deletion of hRAMP2 residues 86-92 significantly attenuated high-affinity (125)I-AM binding and AM-evoked cAMP production despite full cell surface expression of the receptor heterodimer and that deletion of hRAMP3 residues 59-65 had a similar effect. There is little sequence identity between hRAMP3 residues 59-65 and hRAMP2 residues 86-92; moreover, substituting alanine for Trp(86) (Ala(87)), Met(88), Ile(89), Ser(90), Arg(91), or Pro(92) of hRAMP2 had no effect on AM-evoked cAMP production. It thus seems unlikely that any one amino acid residue is responsible for determining selective AM binding or that AM binds directly to these peptide segments. Instead these findings suggest that the respective seven-amino acid sequences confer selectivity either by directly contributing to the structure of ligand binding pocket or by allosteric modulation of the conformation of CRLR.  相似文献   

4.
The receptor activity-modifying proteins (RAMPs) and the calcitonin receptor-like receptor (CRLR) are both required to generate adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) receptors. A mature, fully glycosylated, form of CRLR was associated with (125)I-CGRP binding, upon co-expression of RAMP1 and CRLR. In contrast, RAMP2 and -3 promoted the expression of smaller, core-glycosylated, CRLR forms, which were linked to AM receptor pharmacology. Since core glycosylation is classically a trademark of immature proteins, we tested the hypothesis that the core-glycosylated CRLR forms the AM receptor. Although significant amounts of core-glycosylated CRLR were produced upon co-expression with RAMP2 or -3, cross-linking experiments revealed that (125)I-AM only bound to the fully glycosylated forms. Similarly, (125)I-CGRP selectively recognized the mature CRLR species upon co-expression with RAMP1, indicating that the glycosylation does not determine ligand-binding selectivity. Our results also show that the three RAMPs lie close to the peptide binding pocket within the CRLR-RAMP heterodimers, since (125)I-AM and (125)I-CGRP were incorporated in RAMP2, -3, and -1, respectively. Cross-linking also stabilized the peptide-CRLR-RAMP ternary complexes, with the expected ligand selectivity, indicating that the fully processed heterodimers represent the functional receptors. Overall, the data indicate that direct protein-protein interactions dictate the pharmacological properties of the CRLR-RAMP complexes.  相似文献   

5.
Receptor activity-modifying protein (RAMP) 1 forms a heterodimer with calcitonin receptor-like receptor (CRLR) and regulates its transport to the cell surface. The CRLR.RAMP1 heterodimer functions as a specific receptor for calcitonin gene-related peptide (CGRP). Here, we report the crystal structure of the human RAMP1 extracellular domain. The RAMP1 structure is a three-helix bundle that is stabilized by three disulfide bonds. The RAMP1 residues important for cell-surface expression of the CRLR.RAMP1 heterodimer are clustered to form a hydrophobic patch on the molecular surface. The hydrophobic patch is located near the tryptophan residue essential for binding of the CGRP antagonist, BIBN4096BS. These results suggest that the hydrophobic patch participates in the interaction with CRLR and the formation of the ligand-binding pocket when it forms the CRLR.RAMP1 heterodimer.  相似文献   

6.
The three receptor activity-modifying proteins (RAMPs1, -2, and -3) associate with a wide variety of G protein-coupled receptors (GPCRs), including calcitonin receptor-like receptor (CRLR). In this study, we used flow cytometry to measure RAMP translocation to the cell surface as a marker of RAMP-receptor interaction. Because VPAC2 does not interact with RAMPs, although, like CRLR, it is a Family B peptide hormone receptor, we constructed a set of chimeric CRLR/VPAC2 receptors to evaluate the trafficking interactions between CRLR domains and each RAMP. We found that CRLR regions extending from transmembrane domain 1 (TM1) through TM5 are necessary and sufficient for the transport of RAMPs to the plasma membrane. In addition, the extracellular N-terminal domain of CRLR, its 3rd intracellular loop and/or TM6 were also important for the cell-surface translocation of RAMP2, but not RAMP1 or RAMP3. Other regions within CRLR were not involved in trafficking interactions with RAMPs. These findings provide new insight into the trafficking interactions between accessory proteins such as RAMPs and their receptor partners.  相似文献   

7.
Calcitonin gene‐related peptide (CGRP) and adrenomedullin (AM) are related peptides that are potent vasodilators. The CGRP and AM receptors are heteromeric protein complexes comprised of a shared calcitonin receptor‐like receptor (CLR) subunit and a variable receptor activity modifying protein (RAMP) subunit. RAMP1 enables CGRP binding whereas RAMP2 confers AM specificity. How RAMPs determine peptide selectivity is unclear and the receptor stoichiometries are a topic of debate with evidence for 1:1, 2:2, and 2:1 CLR:RAMP stoichiometries. Here, we describe bacterial production of recombinant tethered RAMP‐CLR extracellular domain (ECD) fusion proteins and biochemical characterization of their peptide binding properties. Tethering the two ECDs ensures complex stability and enforces defined stoichiometry. The RAMP1‐CLR ECD fusion purified as a monomer, whereas the RAMP2‐CLR ECD fusion purified as a dimer. Both proteins selectively bound their respective peptides with affinities in the low micromolar range. Truncated CGRP(27‐37) and AM(37‐52) fragments were identified as the minimal ECD complex binding regions. The CGRP C‐terminal amide group contributed to, but was not required for, ECD binding, whereas the AM C‐terminal amide group was essential for ECD binding. Alanine‐scan experiments identified CGRP residues T30, V32, and F37 and AM residues P43, K46, I47, and Y52 as critical for ECD binding. Our results identify CGRP and AM determinants for receptor ECD complex binding and suggest that the CGRP receptor functions as a 1:1 heterodimer. In contrast, the AM receptor may function as a 2:2 dimer of heterodimers, although our results cannot rule out 2:1 or 1:1 stoichiometries.  相似文献   

8.
Receptor activity-modifying protein (RAMP)-2 and -3 chaperone calcitonin receptor-like receptor (CRLR) to the plasma membrane, where together they form heterodimeric adrenomedullin (AM) receptors. We investigated the contributions made by His residues situated in the RAMP extracellular domain to AM receptor trafficking and receptor signaling by co-expressing hCRLR and V5-tagged-hRAMP2 or -3 mutants in which a His residue was substituted with Ala in HEK-293 cells. Flow cytometric analysis revealed that hRAMP2-H71A mediated normal hCRLR surface delivery, but the resultant heterodimers showed significantly diminished [125I]AM binding and AM-evoked cAMP production. Expression of hRAMP2-H124A and -H127A impaired surface delivery of hCRLR, which impaired or abolishing AM binding and receptor signaling. Although hRAMP3-H97A mediated full surface delivery of hCRLR, the resultant heterodimers showed impaired AM binding and signaling. Other His residues appeared uninvolved in hCRLR-related functions. Thus, the His residues of hRAMP2 and -3 differentially govern AM receptor function.  相似文献   

9.
受体活性修饰蛋白研究进展   总被引:1,自引:0,他引:1  
受体活性修饰蛋白(receptor activity-modifying proteins,RAMPs)属于单跨膜蛋白家族,分三个结构域,RAMP的N端和跨膜区决定本身的功能和受体表型,胞内C端对于配体的信号传导和受体循环有重要作用。目前发现有三个成员:RAMP1、RAMP2和RAMP3。RAMPs通过改变G蛋白偶联受体的糖基化,作用于配体结合区域来调节受体表型。RAMP1与降钙素受体样受体(calcitonin receptor like receptor,CRLR)结合表现出降钙素基因相关肽(calcitonin gene-related peptide,CGRP)受体表型:RAMP2和RAMP3与CRLR结合则对肾上腺髓质素(adrenomedullin,AM)表现高亲和力,与降钙素受体(calcitonin receptor,CTR)结合则作为胰淀粉样酶(amylin,AMY)受体。由此可见,RAMPs不仅调节受体与配体结合,还影响细胞内的蛋白相互作用调节细胞内信号传导来影响细胞的增殖、迁移、分化等生物学特性。RAMPs还对心血管系统的病理生理有重要调节作用。  相似文献   

10.
When co-expressed with receptor activity-modifying protein (RAMP) 1, calcitonin receptor-like receptor (CRLR) can function as a receptor for both calcitonin gene-related peptide (CGRP) and adrenomedullin (AM). To investigate the structural determinants of ligand binding specificity, we examined the extracellular domain of human (h) RAMP1 using various deletion mutants. Co-expression of the hRAMP1 mutants with hCRLR in HEK-293 cells revealed that deletion of residues 91-94, 96-100, or 101-103 blocked [125I]CGRP binding and completely abolished intracellular cAMP accumulation normally elicited by CGRP or AM. On the other hand, the deletion of residues 78-80 or 88-90 significantly attenuated only AM-evoked responses. In all of these cases, the receptor heterodimers were fully expressed at the cell surface. Substituting alanine for residues 91-103 one at a time had little effect on CGRP-induced responses, indicating that although this segment is essential for high affinity agonist binding to the receptors, none of the residues directly interacts with either CGRP or AM. This finding suggests that RAMPs probably determine ligand specificity by contributing to the structure of the ligand-binding pocket or by allosteric modulation of the conformation of the receptor. Interestingly, the L94A mutant up-regulated surface expression of the receptor heterodimer to a greater degree than wild-type hRAMP1, thereby increasing CGRP binding and signaling. L94A also significantly increased cell surface expression of the hRAMP1 deletion mutant D101-103 when co-transfected with hCRLR, and expression of a L94A/D101-103 double mutant markedly attenuated the activity of endogenous RAMP1 in HEK-293T cells.  相似文献   

11.
Receptor activity-modifying protein 2 (RAMP2) enables calcitonin receptor-like receptor (CRLR) to form an adrenomedullin (AM)-specific receptor. Here we investigated the function of the cytoplasmic C-terminal tail (C-tail) of human (h)CRLR by co-transfecting its C-terminal mutants into HEK-293 cells stably expressing hRAMP2. Deleting the C-tail from CRLR disrupted AM-evoked cAMP production or receptor internalization, but did not affect [125I]AM binding. We found that CRLR residues 428-439 are required for AM-evoked cAMP production, though deleting this region had little effect on receptor internalization. Moreover, pretreatment with pertussis toxin (100 ng/mL) led to significant increases in AM-induced cAMP production via wild-type CRLR/RAMP2 complexes. This effect was canceled by deleting CRLR residues 454-457, suggesting Gi couples to this region. Flow cytometric analysis revealed that CRLR truncation mutants lacking residues in the Ser/Thr-rich region extending from Ser449 to Ser467 were unable to undergo AM-induced receptor internalization and, in contrast to the effect on wild-type CRLR, overexpression of GPCR kinases-2, -3 and -4 failed to promote internalization of CRLR mutants lacking residues 449-467. Thus, the hCRLR C-tail is crucial for AM-evoked cAMP production and internalization of the CRLR/RAMP2, while the receptor internalization is dependent on the aforementioned GPCR kinases, but not Gs coupling.  相似文献   

12.
Assembly and signaling of CRLR and RAMP1 complexes assessed by BRET   总被引:2,自引:0,他引:2  
Héroux M  Breton B  Hogue M  Bouvier M 《Biochemistry》2007,46(23):7022-7033
Biochemical and functional evidence suggest that the calcitonin receptor-like receptor (CRLR) interacts with receptor activity-modifying protein-1 (RAMP1) to generate a calcitonin gene-related peptide (CGRP) receptor. Using bioluminescence resonance energy transfer (BRET), we investigated the oligomeric assembly of the CRLR-RAMP1 signaling complex in living cells. As for their wild-type counterparts, fusion proteins linking CRLR and RAMP1 to the energy donor Renilla luciferase (Rluc) and energy acceptor green fluorescent protein (GFP) reach the cell surface only upon coexpression of CRLR and RAMP1. Radioligand binding and cAMP production assays also confirmed that the fusion proteins retained normal functional properties. BRET titration experiments revealed that CRLR and RAMP1 associate selectively to form heterodimers. This association was preserved for a mutated RAMP1 that cannot reach the cell surface, even in the presence of CRLR, indicating that the deficient targeting resulted from the altered conformation of the complex rather than a lack of heterodimerization. BRET analysis also showed that, in addition to associate with one another, both CRLR and RAMP1 can form homodimers. The homodimerization of the coreceptor was further confirmed by the ability of RAMP1 to prevent cell surface targeting of a truncated RAMP1 that normally exhibits receptor-independent plasma membrane delivery. Although the role of such dimerization remains unknown, BRET experiments clearly demonstrated that CRLR can engage signaling partners, such as G proteins and beta-arrestin, following CGRP stimulation, only in the presence of RAMP1. In addition to shed new light on the CRLR-RAMP1 signaling complex, the BRET assays developed herein offer new biosensors for probing CGRP receptor activity.  相似文献   

13.
The calcitonin (CT) receptor (CTR) and the CTR-like receptor (CRLR) are close relatives within the type II family of G-protein-coupled receptors, demonstrating sequence identity of 50%. Unlike the interaction between CT and CTR, receptors for the related hormones and neuropeptides amylin, CT-gene-related peptide (CGRP) and adrenomedullin (AM) require one of three accessory receptor-activity-modifying proteins (RAMPs) for ligand recognition. An amylin/CGRP receptor is revealed when CTR is co-expressed with RAMP1. When complexed with RAMP3, CTR interacts with amylin alone. CRLR, initially classed as an orphan receptor, is a CGRP receptor when co-expressed with RAMP1. The same receptor is specific for AM in the presence of RAMP2. Together with human RAMP3, CRLR defines an AM receptor, and with mouse RAMP3 it is a low-affinity CGRP/AM receptor. CTR-RAMP1, antagonized preferentially by salmon CT-(8-32) and not by CGRP-(8-37), and CRLR-RAMP1, antagonized by CGRP-(8-37), are two CGRP receptor isotypes. Thus amylin and CGRP interact specifically with heterodimeric complexes between CTR and RAMP1 or RAMP3, and CGRP and AM interact with complexes between CRLR and RAMP1, RAMP2 or RAMP3.  相似文献   

14.
Flahaut M  Pfister C  Rossier BC  Firsov D 《Biochemistry》2003,42(34):10333-10341
The calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein-3 (RAMP3) can assemble into a CRLR/RAMP3 heterodimeric receptor that exhibits the characteristics of a high affinity adrenomedullin receptor. RAMP3 participates in adrenomedullin (AM) binding via its extracellular N-terminus characterized by the presence of six highly conserved cysteine residues and four N-glycosylation consensus sites. Here, we assessed the usage of these conserved residues in cotranslational modifications of RAMP3 and addressed their role in functional expression of the CRLR/RAMP3 receptor. Using a Xenopus oocyte expression system, we show that (i) RAMP3 is assembled with CRLR as a multiple N-glycosylated species in which two, three, or four consensus sites are used; (ii) elimination of all N-glycans in RAMP3 results in a significant inhibition of receptor [(125)I]AM binding and an increase in the EC(50) value for AM; (iii) several lines of indirect evidence indicate that each of the six cysteines is involved in disulfide bond formation; (iv) when all cysteines are mutated to serines, RAMP3 is N-glycosylated at all four consensus sites, suggesting that disulfide bond formation inhibits N-gylcosylation; and (v) elimination of all cysteines abolishes adrenomedullin binding and leads to a complete loss of receptor function. Our data demonstrate that cotranslational modifications of RAMP3 play a critical role in the function of the CRLR/RAMP3 adrenomedullin receptor.  相似文献   

15.
A functional calcitonin gene-related peptide (CGRP) receptor requires dimerization of calcitonin receptor-like receptor (CRLR) with receptor activity-modifying protein 1 (RAMP 1). To determine the function of the three domains (extracellular, ECD; transmembrane, TM; and tail domains) of human RAMP 1, three mutants were constructed: RAMP 1 without the cytoplasmic tail, a chimera consisting of the ECD of RAMP 1 and the TM and tail of the platelet-derived growth factor receptor, and the ECD of RAMP 1 alone. These RAMP 1 mutants were examined for their ability to associate with CRLR to effect CGRP-stimulated cAMP accumulation, CGRP binding, CRLR trafficking, and cell surface expression. All RAMP 1 mutants were able to associate with CRLR with full efficacy for CGRP-stimulated cAMP accumulation. However, the RAMP 1/platelet-derived growth factor receptor chimera demonstrated a 10-fold decrease in potency for CGRP signaling and binding, and the RAMP 1-ECD mutant had a 4000-fold decrease in potency. In conclusion, the ECD of RAMP 1 is sufficient for normal CRLR association and efficacy. The presence of a TM domain and the specific sequence of the RAMP 1 TM domain contribute to CGRP affinity and potency. The C-terminal tail of RAMP 1 is unnecessary for CRLR function.  相似文献   

16.
Calcitonin gene-related peptide (CGRP) and adrenomedullin (ADM), two closely related peptides, initiate their biological responses through their interaction with calcitonin receptor-like receptor (CRLR). The CRLR receptor phenotype can be determined by coexpression of CRLR with one of the three-receptor activity modifying proteins (RAMPs). In this report, we characterized the pharmacological properties of the human or porcine CRLR with individual RAMPs transiently expressed in human embroynic kidney cell line (HEK-293). Characterization of RAMP1/human or porcine CRLR combination by radioligand binding ([125I] hCGRP) and functional assay (activation of adenylyl cyclase) revealed the properties of CGRP receptor. Similarly characterization of RAMP2/human or porcine CRLR and RAMP3/human or porcine CRLR combination by radioligand binding ([125I]rADM) and functional assay (activation of adenylyl cyclase) revealed the properties of ADM (22–52) sensitive-ADM receptor. In addition, porcine CRLR/RAMP2 or 3 combination displayed specific high affinity [125I] hCGRP binding also. Also, co-transfection of porcine CRLR with RAMPs provided higher expression level of the receptor than the human counterpart. Thus the present study along with earlier studies strongly support the role of RAMPs in the functional expression of specific CRLRs.  相似文献   

17.
Expression of the calcitonin receptor-like receptor (CRLR) and its receptor activity modifying proteins (RAMPs) can produce calcitonin gene-related peptide (CGRP) receptors (CRLR/RAMP1) and adrenomedullin (AM) receptors (CRLR/RAMP2 or -3). A chimera of the CRLR and green fluorescent protein (CRLR-GFP) was used to study receptor localization and trafficking in stably transduced HEK 293 cells, with or without co-transfection of RAMPs. CRLR-GFP failed to generate responses to CGRP or AM without RAMPs. Furthermore, CRLR-GFP was not found in the plasma membrane and its localization was unchanged after agonist exposure. When stably coexpressed with RAMPs, CRLR-GFP appeared on the cell surface and was fully active in intracellular cAMP production and calcium mobilization. Agonist-mediated internalization of CRLR-GFP was observed in RAMP1/CGRP or AM, RAMP2/AM, and RAMP3/AM, which occurred with similar kinetics, indicating the existence of ligand-specific regulation of CRLR internalization by RAMPs. This internalization was strongly inhibited by hypertonic medium (0.45 m sucrose) and paralleled localization of rhodamine-labeled transferrin, suggesting that CRLR endocytosis occurred predominantly through a clathrin-dependent pathway. A significant proportion of CRLR was targeted to lysosomes upon binding of the ligands, and recycling of the internalized CRLR was not efficient. In HEK 293 cells stably expressing CRLR-GFP and Myc-RAMPs, these rhodamine-labeled RAMPs were co-localized with CRLR-GFP in the presence and absence of the ligands. Thus, the CRLR is endocytosed together with RAMPs via clathrin-coated vesicles, and both the internalized molecules are targeted to the degradative pathway.  相似文献   

18.
Calcitonin, calcitonin gene-related peptide (CGRP), adrenomedullin (ADM), and amylin belong to a unique group of peptide hormones important for homeostasis in diverse tissues. Calcitonin is essential for calcium balance, whereas CGRP and ADM are important for neurotransmission and cardiovascular and respiratory regulation. Based on phylogenetic analysis, we identified intermedin as a novel member of the calcitonin/CGRP peptide family. Analysis of intermedin expression indicated that intermedin is expressed primarily in the pituitary and gastrointestinal tract. Intermedin increased cAMP production in SK-N-MC and L6 cells expressing endogenous CGRP receptors and competed with labeled CGRP for binding to its receptors in these cells. In addition, treatment of 293T cells expressing recombinant calcitonin receptor-like receptor (CRLR) and one of the three receptor activity-modifying proteins (RAMPs) showed that a CRLR/RAMP receptor complex is required for intermedin signaling. In contrast to CGRP and ADM, which exhibited a preferential stimulation of CRLR when co-expressed with RAMP1 and RAMP2 or RAMP3, respectively, intermedin represents a nonselective agonist for the RAMP coreceptors. In vivo studies demonstrated that intermedin treatment led to blood pressure reduction in both normal and spontaneously hypertensive rats via interactions with the CRLR/RAMP receptor complexes. Furthermore, in vivo treatment in mice with intermedin led to suppression of gastric emptying activity and food intake. Thus, identification of intermedin as a novel member of the calcitonin/CGRP peptide family capable of signaling through CRLR/RAMP receptor complexes provides an additional player in the regulation of peripheral tissues by CRLR and will allow development of new therapeutic agents for pathologies associated with diverse vascular and gastrointestinal disorders.  相似文献   

19.
Rat RAMP domains involved in adrenomedullin binding specificity   总被引:1,自引:0,他引:1  
When coexpressed with receptor activity-modifying protein (RAMP)2 or -3, calcitonin receptor-like receptor (CRLR) functions as an adrenomedullin (AM) receptor (CRLR/RAMP2 or -3). Coexpression of rat (r)CRLR with rRAMP deletion mutants in HEK293T cells revealed that deletion of residues 93-99 from rRAMP2 or residues 58-64 from rRAMP3 significantly inhibits high-affinity [125I]AM binding and AM-evoked cAMP production, despite full cell surface expression of the receptor heterodimer. Apparently, these two seven-residue segments are key determinants of high-affinity agonist binding to rAM receptors and of receptor functionality. Consequently, their deletion yields peptides that are able to serve as negative regulators of AM receptor function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号