首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
T Davis-Smyth  H Chen  J Park  L G Presta    N Ferrara 《The EMBO journal》1996,15(18):4919-4927
Vascular endothelial growth factor (VEGF) is an angiogenic inducer that mediates its effects through two high affinity receptor tyrosine kinases, Flt-1 and KDR. Flt-1 is required for endothelial cell morphogenesis whereas KDR is involved primarily in mitogenesis. Flt-1 has an alternative ligand, placenta growth factor (PlGF). Both Flt-1 and KDR have seven immunoglobulin (Ig)-like domains in the extracellular domain. The significance and function of these domains for ligand binding and receptor activation are unknown. Here we show that deletion of the second domain of Flt-1 completely abolishes the binding of VEGF. Introduction of the second domain of KDR into an Flt-1 mutant lacking the homologous domain restored VEGF binding. However, the ligand specificity was characteristic of the KDR receptor. We then created chimeric receptors where the first three or just the second Ig-like domains of Flt-1 replaced the corresponding domains in Flt-4, a receptor that does not bind VEGF, and analyzed their ability to bind VEGF. Both swaps conferred upon Flt-4 the ability to bind VEGF with an affinity nearly identical to that of wild-type Flt-1. Furthermore, transfected cells expressing these chimeric Flt-4 receptors exhibited increased DNA synthesis in response to VEGF or PlGF. These results demonstrate that a single Ig-like domain is the major determinant for VEGF-PlGF interaction and that binding to this domain may initiate a signal transduction cascade.  相似文献   

2.
Vascular endothelial growth factor (VEGF) has two highly homologous tyrosine kinase receptors: Flt-1 (VEGFR-1) and KDR (VEGFR-2). KDR is strongly phosphorylated on tyrosines and can transmit mitogenic and motogenic signals following VEGF binding, while Flt-1 is markedly less effective in mediating such functions. To dissect the regions that account for the differences between the two receptors, we generated a series of chimeric Flt-1-KDR molecules. We found that the juxtamembrane region of Flt-1 prevents key signaling functions. When the juxtamembrane region of Flt-1 is replaced by that of KDR, Flt-1 becomes competent to mediate endothelial cell migration and phosphatidylinositol 3'-kinase activation in response to VEGF. Further mutational analysis shows that a short divergent sequence is responsible for such repressor function. However, mutant Flt-1 receptors lacking this sequence do not transmit effective proliferative signals, suggesting that this receptor function is regulated separately. These results define a novel functional domain that serves to repress Flt-1 activity in endothelial cells.  相似文献   

3.
Placenta growth factor (PlGF) belongs to the vascular endothelial growth factor (VEGF) family and represents a key regulator of angiogenic events in pathological conditions. PlGF exerts its biological function through the binding and activation of the seven immunoglobulin-like domain receptor Flt-1, also known as VEGFR-1. Here, we report the first detailed mutagenesis studies that provide a basis for understanding molecular recognition between PlGF-1 and Flt-1, highlighting some of the residues that are critical for receptor recognition. Mutagenesis analysis, performed on the basis of a structural model of interaction between PlGF and the minimal binding domain of Flt-1, has led to the identification of several PlGF-1 residues involved in Flt-1 recognition. The two negatively charged residues, Asp-72 and Glu-73, located in the beta3-beta4 loop, are critical for Flt-1 binding. Other mutations, which bring about a significant decrease in PlGF binding activity, are Gln-27, located in the N-terminal alpha-helix, and Pro-98 and Tyr-100 on the beta6 strand. The mutation of one of the two glycosylated residues of PlGF, Asn-84, generates a PlGF variant with reduced binding activity. This indicates that, unlike in VEGF, glycosylation plays an important role in Flt-1 binding. The double mutation of residues Asp-72 and Glu-73 generates a PlGF variant unable to bind and activate the receptor molecules on the cell surface. This variant failed to induce in vitro capillary-like tube formation of primary endothelial cells or neo-angiogenesis in an in vivo chorioallantoic membrane assay.  相似文献   

4.
The angiogenic growth factor VEGF binds to the receptor tyrosine kinases Flt-1 and KDR/Flk-1. Immunoglobulin (Ig)-like loop-2 of Flt-1 is involved in binding VEGF, but the contribution of other Flt-1 Ig-loops to VEGF binding remains unclear. We tested the ability of membrane-bound chimeras between the extracellular domain of Flt-1 and the cell adhesion molecule embigin to bind VEGF. VEGF bound as well to receptors containing Flt-1 loops 1-2 or 2-3 as it did to the entire Flt-1 extracellular domain. Chimeras containing only loop-2 of Flt-1 bound VEGF with 22-fold lower affinity. We conclude that high-affinity VEGF binding requires Ig-like loop-2 plus either loop-1 or loop-3. In addition, Flt-1 amino acid residues Arg-224 and Asp-231 were not essential for high-affinity binding of VEGF to membrane-bound Flt-1.  相似文献   

5.
VEGF is an important mediator of pathological angiogenesis in the eye and is a target for the development of novel anti-angiogenic molecules. In a previous study we identified 12-amino acid peptides derived from exon 6 of VEGF that inhibited VEGF binding to its receptors in HUVECs, endothelial cell functions, and in vitro angiogenesis. Screening of a series of truncated peptides corresponding to the inhibitory region of exon 6 identified a seven amino acid residue peptide, RKRKKSR, as the minimum exon 6-encoded sequence which retains the ability to inhibit VEGF receptor binding and angiogenesis in vitro. The effect of the seven-residue peptide was examined in a mouse model of ischaemic retinal neovascularisation. Administration of the peptide caused a 50% inhibition of retinal neovascularisation and was as effective in inhibiting ischaemic angiogenesis as soluble Flt-1 adenovirus. These results demonstrate that a seven amino acid VEGF exon 6-derived peptide is an effective inhibitor of ocular neovascularisation in vivo, and may have applications in the treatment of pathophysiological ocular neovascularisation in human disease.  相似文献   

6.
Vascular endothelial growth factor (VEGF165) exhibits multiple effects via the activation of two distinct endothelial receptor tyrosine kinases: Flt-1 (fms-like tyrosine kinase-1) and KDR (kinase insert domain-containing receptor). KDR shows strong ligand-dependent tyrosine phosphorylation in comparison with Flt-1 and mainly mediates the mitogenic, angiogenic, and permeability-enhancing effects of VEGF165. Here we show the isolation of two VEGFs from viper venoms and the characterization of their unique biological properties. Snake venom VEGFs strongly stimulated proliferation of vascular endothelial cells in vitro. Interestingly, the maximum activities were almost twice that of VEGF165. They also induced strong hypotension on rat arterial blood pressure compared with VEGF165 in vivo. A receptor binding assay revealed that snake venom VEGFs bound to KDR-IgG with high affinity (Kd = approximately 0.1 nm) as well as to VEGF165 but did not interact with Flt-1, Flt-4, or neuropilin-1 at all. Our data clearly indicate that snake venom VEGFs act through the specific activation of KDR and show potent effects. Snake venom VEGFs are a highly specific ligand to KDR and form a new group of the VEGF family.  相似文献   

7.
8.
Vascular endothelial cell growth factor (VEGF) is a potent angiogenic factor expressed during embryonic development, during wound healing, and in pathologies dependent on neovascularization, including cancer. Regulation of the receptor tyrosine kinases, KDR and Flt-1, to which VEGF binds on endothelial cells is incompletely understood. Chronic incubation with tumor-conditioned medium or VEGF diminished (125)I-VEGF binding to human umbilical vein endothelial cells, incorporation of (125)I-VEGF into covalent complexes with KDR and Flt1, and immunoreactive KDR in cell lysates. Receptor down-regulation desensitized VEGF activation of mitogen-activated protein kinase (extracellular signal-regulated kinases 1 and 2) and p38 mitogen-activated protein kinase. Preincubation with VEGF or tumor-conditioned medium down-regulated cell surface receptor expression but up-regulated KDR and Flt-1 mRNAs, an effect abrogated by a neutralizing VEGF antibody. Removal of VEGF from the medium led to recovery of (125)I-VEGF binding and resensitization of human umbilical vein endothelial cells. Recovery of receptor expression was inhibited by cycloheximide, indicating that augmented VEGF receptor mRNAs, and not receptor recycling from a cytoplasmic pool, restored responsiveness. As the VEGF receptors promote endothelial cell survival, proliferation, and other events necessary for angiogenesis, the noncoordinate regulation of VEGF receptor proteins and mRNAs suggests that human umbilical vein endothelial cells are protected against inappropriate or prolonged loss of VEGF receptors by a homeostatic mechanism important to endothelial cell function.  相似文献   

9.
Vascular endothelial growth factor (VEGF) is a potent endothelial cell-specific mediator of angiogenesis and vasculogenesis. VEGF is involved pathologically in cancer, proliferative retinopathy and rheumatoid arthritis, and as such represents an important therapeutic target. Three classes of disulfide-constrained peptides that antagonize binding of the VEGF dimer to its receptors, KDR and Flt-1, were identified previously using phage display methods. NMR studies of a representative peptide from the most potent class of these peptide antagonists, v107 (GGNECDAIRMWEWECFERL), were undertaken to characterize its interactions with VEGF. v107 has no defined structure free in solution, but binding to VEGF induces folding of the peptide. The solution structure of the VEGF receptor-binding domain-v107 complex was determined using 3940 (1970 per VEGF monomer) internuclear distance and 476 (238 per VEGF monomer) dihedral angle restraints derived from NMR data obtained using samples containing either (13)C/(15)N-labeled protein plus excess unlabeled peptide or (13)C/(15)N-labeled peptide plus excess unlabeled protein. Residual dipolar coupling restraints supplemented the structure determination of the complex and were found to increase significantly both the global precision of VEGF in the complex and the agreement with available crystal structures of VEGF. The calculated ensemble of structures is of high precision and is in excellent agreement with the experimental restraints. v107 has a turn-helix conformation with hydrophobic residues partitioned to one face of the peptide and polar or charged residues at the other face. Contacts between two v107 peptides and the VEGF dimer are mediated by primarily hydrophobic side-chain interactions. The v107-binding site on VEGF overlaps partially with the binding site of KDR and is similar to that for domain 2 of Flt-1. The structure of the VEGF-v107 complex provides new insight into how binding to VEGF can be achieved that may be useful for the design of small molecule antagonists.  相似文献   

10.
Kim J  Kim SW  Kim WJ 《Oligonucleotides》2011,21(2):101-107
Tumor angiogenesis appears to be achieved by the expression of vascular endothelial growth factor (VEGF) within solid tumors that stimulate host vascular endothelial cell mitogenesis and possibly chemotaxis. VEGF's angiogenic actions are mediated through its high-affinity binding to 2 endothelium-specific receptor tyrosine kinase, Flt-1 (VEGFR1), and Flk-1/KDR (VEGFR2). RNA interference-mediated knockdown of protein expression at the messenger RNA level provides a new therapeutic strategy to overcome various diseases. To achieve high efficacy in RNA interference-mediated therapy, it is critical to develop an efficient delivering system to deliver small interference RNA (siRNA) into tissues or cells site-specifically. We previously reported an angiogenic endothelial cell-targeted polymeric gene carrier, PEI-g-PEG-RGD. This targeted carrier was developed by the conjugation of the ανβ3/ανβ5 integrin-binding RGD peptide (ACDCRGDCFC) to the cationic polymer, branched polyethylenimine, with a hydrophilic polyethylene glycol (PEG) spacer. In this study, we used PEI-g-PEG-RGD to deliver siRNA against VEGFR1 into tumor site. The physicochemical properties of PEI-g-PEG-RGD/siRNA complexes was evaluated. Further, tumor growth profile was also investigated after systemic administration of PEI-g-PEG-RGD/siRNA complexes.  相似文献   

11.
12.
Neuropilin-1 (NP-1) is a receptor for vascular endothelial growth factor-A165 (VEGF-A165) in endothelial cells. To define the role of NP-1 in the biological functions of VEGF, we developed a specific peptide antagonist of VEGF binding to NP-1 based on the NP-1 binding site located in the exon 7- and 8-encoded VEGF-A165 domain. The bicyclic peptide, EG3287, potently (K(i) 1.2 microM) and effectively (>95% inhibition at 100 microM) inhibited VEGF-A165 binding to porcine aortic endothelial cells expressing NP-1 (PAE/NP-1) and breast carcinoma cells expressing only NP-1 receptors for VEGF-A, but had no effect on binding to PAE/KDR or PAE/Flt-1. Molecular dynamics calculations, a nuclear magnetic resonance structure of EG3287, and determination of stability in media, indicated that it constitutes a stable subdomain very similar to the corresponding region of native VEGF-A165. The C terminus encoded by exon 8 and the three-dimensional structure were both critical for EG3287 inhibition of NP-1 binding, whereas modifications at the N terminus had little effect. Although EG3287 had no direct effect on VEGF-A165 binding to KDR receptors, it inhibited cross-linking of VEGF-A165 to KDR in human umbilical vein endothelial cells co-expressing NP-1, and inhibited stimulation of KDR and PLC-gamma tyrosine phosphorylation, activation of ERKs1/2 and prostanoid production. These findings characterize the first specific antagonist of VEGF-A165 binding to NP-1 and demonstrate that NP-1 is essential for optimum KDR activation and intracellular signaling. The results also identify a key role for the C-terminal exon 8 domain in VEGF-A165 binding to NP-1.  相似文献   

13.
Spleen tyrosine kinase (Syk), expressed in endothelial cells, has been implicated in migration and proliferation and in vasculogenesis. This study was conducted to determine the contribution of Syk and the underlying mechanism to the angiogenic effect of ANG II and VEGF. Angiogenesis was determined by tube formation from the endothelial cell line EA.hy926 (EA) and human umbilical vein endothelial cells (HUVECs) and microvessel sprouting in rat aortic rings. ANG II (10 nM), EGF (30 ng/ml), and VEGF (50 ng/ml) stimulated EA cells and HUVECs to form tubular networks and increased aortic sprouting; these effects were blocked by VEGF receptor-1 and Flt-1 antibody (Flt-1/Fc) but not by the VEGF receptor-2 (Flk-1) antagonist SU-1498. ANG II increased the phosphorylation of Flt-1 but not Flk-1, whereas VEGF increased the phosphorylation of both receptors in EA cells and HUVECs. VEGF expression elicited by ANG II was not altered by Flt-1/Fc or SU-1498. EGF stimulated tube formation from EA cells and HUVECs and Flt-1 phosphorylation and aortic sprouting, which were blocked by the EGF receptor antagonist AG-1478 and Flt-1/Fc but not by SU-1498. ANG II-, EGF-, and VEGF-induced tube formation and aortic sprouting were attenuated by the Syk inhibitor piceatannol and by Syk short hairpin interfering (sh)RNA and small interfering RNA, respectively. ANG II, EGF, and VEGF increased Syk phosphorylation, which was inhibited by piceatannol and Syk shRNA in EA cells and HUVECs. Neither piceatannol nor Syk shRNA altered ANG II-, EGF-, or VEGF-induced phosphorylation of Flt-1. These data suggest that ANG II stimulates angiogenesis via transactivation of the EGF receptor, which promotes the phosphorylation of Flt-1 and activation of Syk independent of VEGF expression.  相似文献   

14.
Vascular endothelial growth factor (VEGF) signaling plays an important role in angiogenesis. In the VEGF signaling pathway, the key components are VEGF and its receptors, Flt-1 and KDR. In this study, we show that transfection of synthetic miR-200b reduced protein levels of VEGF, Flt-1, and KDR. In A549 cells, miR-200b targeted the predicted binding sites in the 3′-untranslated region (3′-UTR) of VEGF, Flt-1, and KDR as revealed by a luciferase reporter assay. When transfected with miR-200b, the ability of HUVECs to form a capillary tube on Matrigel and VEGF-induced phosphorylation of ERK1/2 were significantly reduced. Taken together, these results suggest that miR-200b negatively regulates VEGF signaling by targeting VEGF and its receptors and that miR-200b may have therapeutic potential as an angiogenesis inhibitor.  相似文献   

15.
The angiogenic molecule placenta growth factor (PlGF) is a member of the cysteine-knot family of growth factors. In this study, a mature isoform of the human PlGF protein, PlGF-1, was crystallized as a homodimer in the crystallographic asymmetric unit, and its crystal structure was elucidated at 2.0 A resolution. The overall structure of PlGF-1 is similar to that of vascular endothelial growth factor (VEGF) with which it shares 42% amino acid sequence identity. Based on structural and biochemical data, we have mapped several important residues on the PlGF-1 molecule that are involved in recognition of the fms-like tyrosine kinase receptor (Flt-1, also known as VEGFR-1). We propose a model for the association of PlGF-1 and Flt-1 domain 2 with precise shape complementarity, consider the relevance of this assembly for PlGF-1 signal transduction, and provide a structural basis for altered specificity of this molecule.  相似文献   

16.
Neuropilin-1 (NP-1) was first identified as a semaphorin receptor involved in neuron guidance. Subsequent studies demonstrated that NP-1 also binds an isoform of vascular endothelial growth factor (VEGF) as well as several VEGF homologs, suggesting that NP-1 may also function in angiogenesis. Here we report in vitro binding experiments that shed light on the interaction between VEGF165 and NP-1, as well as a previously unknown interaction between NP-1 and one of the VEGF receptor tyrosine kinases, VEGFR1 or Flt-1. BIAcore analysis demonstrated that, with the extracellular domain (ECD) of NP-1 immobilized at low density, VEGF165 bound with low affinity (K(d) = 2 microm) and fast kinetics. The interaction was dependent on the heparin-binding domain of VEGF165 and increased the affinity of VEGF165 for its signaling receptor VEGFR2 or kinase insert domain-containing receptor. The affinity of VEGF165 for the NP-1 ECD was greatly enhanced either by increasing the density of immobilized NP-1 (K(d) = 113 nm) or by the addition of heparin (K(d) = 25 nm). We attribute these affinity enhancements to avidity effects mediated by the bivalent VEGF165 homodimer or multivalent heparin. We also show that the NP-1 ECD binds with high affinity (K(d) = 1.8 nm) to domains 3 and 4 of Flt-1 and that this interaction inhibits the binding of NP-1 to VEGF165. Based on these results, we propose that NP-1 acts as a coreceptor for various ligands and that these functions are dependent on the density of NP-1 on the cell membrane. Furthermore, Flt-1 may function as a negative regulator of angiogenesis by competing for NP-1.  相似文献   

17.
Acute exercise increases vascular endothelial growth factor (VEGF), transforming growth factor-beta(1) (TGF-beta(1)), and basic fibroblast growth factor (bFGF) mRNA levels in skeletal muscle, with the greatest increase in VEGF mRNA. VEGF functions via binding to the VEGF receptors Flk-1 and Flt-1. Captopril, an angiotensin-converting enzyme inhibitor, has been suggested to reduce the microvasculature in resting and exercising skeletal muscle. However, the molecular mechanisms responsible for this reduction have not been investigated. We hypothesized that this might occur via reduced VEGF, TGF-beta(1), bFGF, Flk-1, and Flt-1 gene expression at rest and after exercise. To investigate this, 10-wk-old female Wistar rats were placed into four groups (n = 6 each): 1) saline + rest; 2) saline + exercise; 3) 100 mg/kg ip captopril + rest; and 4) 100 mg/kg ip captopril + exercise. Exercise consisted of 1 h of running at 20 m/min on a 10 degrees incline. VEGF, TGF-beta(1), bFGF, Flk-1, and Flt-1 mRNA were analyzed from the left gastrocnemius by quantitative Northern blot. Exercise increased VEGF mRNA 4.8-fold, TGF-beta(1) mRNA 1.6-fold, and Flt-1 mRNA 1.7-fold but did not alter bFGF or Flk-1 mRNA measured 1 h after exercise. Captopril did not affect the rest or exercise levels of VEGF, TGF-beta(1), bFGF, and Flt-1 mRNA. Captopril did reduce Flk-1 mRNA 30-40%, independently of exercise. This is partially consistent with the suggestion that captopril may inhibit capillary growth.  相似文献   

18.
Vascular endothelial growth factor (VEGF) is known to play a predominant role in tumor angiogenesis and metastasis formation that is mediated by its interactions with two tyrosine kinase receptors, VEGFRI (Flt-1) and VEGFRII (KDR). Inhibition of VEGF-dependent events in tumor tissues is known to enhance apoptosis and to suppress tumor growth. A novel peptide, SP5.2, which selectively binds Flt-1 and inhibits a broad range of VEGF-mediated events, was identified using a phage-display library screening. The fluorescein-labeled SP5.2 specifically bound to VEGF-stimulated primary human cerebral endothelial cells (HCECs), whereas non-stimulated HCECs, as well as human neuroblastoma cells (ShyY) did not show any interaction with the peptide. SP5.2 prevented proliferation of cultured primary human umbilical vein endothelial cells induced by recombinant human VEGF165 with an IC50 of 5 microm. SP5.2 was also shown to antagonize VEGF- and PLGF-induced, but not basic fibroblast growth factor-induced proliferation of HCECs. In contrast to "scrambled" peptide, SP5.2 was also found to selectively inhibit VEGF-stimulated migration of HCECs. The in vitro analysis of antiangiogenic activity of SP5.2 using a capillary-like tube formation assay showed that VEGF-induced angiogenesis of HCECs grown on Matrigel was completely inhibited in the presence of 10 microm SP5.2. Further studies demonstrated that SP5.2 prevented VEGF-induced permeability increase in HCECs monolayers. To explore whether SP5.2 can be used as a targeting agent, chemical and recombinant conjugates of SP5.2 with reporter proteins (peroxidase and beta-galactosidase) were produced. The resulting products showed significant increases (200-fold for SP5.2-beta-gal and 400-fold for SP5.2-peroxidase) in binding affinity to recombinant Flt-1 compared with the original synthetic SP5.2, suggesting that conjugate with therapeutic activity in nanomolar range could potentially be developed based on SP5.2 structure.  相似文献   

19.
Vascular endothelial growth factor (VEGF) is a pleiotropic factor that exerts a multitude of biological effects through its interaction with two receptor tyrosine kinases, fms-like tyrosine kinase (Flt-1) or VEGF receptor 1 and kinase insert domain-containing receptor (KDR) or VEGF receptor 2. Whereas it is commonly accepted that KDR is responsible for the proliferative activities of VEGF, considerable controversy and uncertainty exist about the role of the individual receptors in eliciting many of the other effects. Based on a comprehensive mutational analysis of the receptor-binding site of VEGF, an Flt-1-selective variant was created containing four substitutions from the wild-type protein. This variant bound with wild-type affinity to Flt-1, was at least 470-fold reduced in binding to KDR, and had no activity in cell-based assays measuring autophosphorylation of KDR or proliferation of primary human vascular endothelial cells. Using a competitive phage display strategy, two KDR-selective variants were discovered with three and four changes from wild-type, respectively. Both variants had approximately wild-type affinity for KDR, were about 2000-fold reduced in binding to Flt-1, and showed activity comparable with the wild-type protein in KDR autophosphorylation and endothelial cell proliferation assays. These variants will serve as useful reagents in elucidating the roles of Flt-1 and KDR.  相似文献   

20.
Diminished alveolar and vascular development is characteristic of bronchopulmonary dysplasia (BPD) affecting many preterm newborns. Hypoxia promotes angiogenic responses in developing lung via, for example, vascular endothelial growth factor (VEGF). To determine if prolyl 4-hydroxylase (PHD) inhibition could augment hypoxia-inducible factors (HIFs) and expression of angiogenic proteins essential for lung development, HIF-1alpha and -2alpha proteins were assessed in human developing and adult lung microvascular endothelial cells and alveolar epithelial-like cells treated with either the HIF-PHD-selective inhibitor PHI-1 or the nonselective PHD inhibitors dimethyloxaloylglycine (DMOG) and deferoxamine (DFO). PHI-1 stimulated HIF-1alpha and -2alpha equally or more effectively than did DMOG or DFO, enhanced VEGF release, and elevated glucose consumption, whereas it was considerably less cytotoxic than DMOG or DFO. Moreover, VEGF receptor Flt-1 levels increased, whereas KDR/Flk-1 decreased. PHI-1 treatment also increased PHD-2, but not PHD-1 or -3, protein. These results provide proof of principle that HIF stimulation and modulation of HIF-regulated angiogenic proteins through PHI-1 treatment are feasible, effective, and nontoxic in human lung cells, suggesting the use of PHI-1 to enhance angiogenesis and lung growth in evolving BPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号