首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In the outer membrane of P. aeruginosa, a protein of apparent molecular weight 8,000 (protein I) is present as a major protein. Purification and chemical analysis of protein I were carried out. This protein was purified by essentially the same procedure as for the purification of the E. coli lipoprotein, which was developed by Inouye et al. (J. Bacteriol. (1976) 127, 555--563). The amino acid composition of protein I was determined. Protein I lacks proline, valine, isoleucine, phenylalanine, tryptophan, and half-cystine. Fatty acid analysis of the protein revealed that it contained 0.89 mol of fatty acids per mol of protein. Among the fatty acids hexadecanoic acid (C16:0) was predominant. In an in vivo labeling experiment, [2-3H]glycerol was incorporated into protein I. A protein with similar mobility to protein I on urea-SDS polyacrylamide gel electrophoresis was isolated from the purified peptidoglycan of P. aeruginosa by trypsin digestion. The amino acid composition of this protein was essentially the same as that of protein I. These results indicate that the outer membrane of P. aeruginosa contains a protein analogous to the E. coli lipoprotein, although considerable differences were observed in the amino acid composition and the fatty acid content.  相似文献   

2.
The gene for the Pseudomonas aeruginosa outer membrane lipoprotein I was isolated from a genomic library in the phage lambda EMBL3 vector and subsequently subcloned in the low copy-number, wide host-range plasmid vector, pKT240. The cloned gene was highly expressed, resulting in the production of a low molecular-weight protein (8 kD) that was found to be associated with the outer membrane. Sequence analysis showed an open reading frame of 83 amino acids with a putative N-terminal hydrophobic signal peptide of 19 residues immediately followed by the lipoprotein consensus sequence, GLY-CYS-SER-SER (residues 19-22). The predicted amino acid composition of the mature polypeptide and that of the purified lipoprotein I of P. aeruginosa (Mizuno and Kageyama, 1979) were identical. In contrast with other Gram-negative outer membrane lipoproteins, conformation predictions suggested that the mature protein was a single alpha helix.  相似文献   

3.
4.
The existence of a free form of a specific lipoprotein of molecular weight 7,200 was examined in the envelopes of several gram-negative bacteria. When the envelope proteins were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, distinct peaks were observed in Salmonella typhimurium, Serratia marcescens, and Pseudomonas aeruginosa at the same position as the free form of the lipoprotein of Escherichia coli. However, the peak was not observed in Proteus mirabilis. The protein at the peak in S. typhimurium was shown to contain little or no histidine as expected from the amino acid composition of the lipoprotein. Furthermore, antiserum against the highly purified lipoprotein from E. coli was shown to react with the proteins from S. typhimurium and S. marcescens and to form the specific immunoprecipitates. In contrast, the protein from P. aeruginosa did not react with the antiserum at all. Thus, it is concluded that S. typhimurium and S. marcescens have the free form of the lipoprotein in their envelopes as does E. coli. P. aeruginosa contains a protein of the same size as the lipoprotein, but it is not certain whether the protein is the same structural protein as the lipoprotein from E. coli. P. mirabilis may not have any free form of the lipoprotein, may have it in a very small amount, or may have a lipoprotein of different molecular weight serving the same function.  相似文献   

5.
The Ipp gene from Proteus mirabilis was cloned onto pBR322 and expressed in Escherichia coli. The P. mirabilis lpp gene is unique in that it has two tandem promoters transcribing two mRNAs that differ in length by approximately 70 nucleotides at their 5'-ends. The two mRNAs thus encode the identical lipoprotein. The P. mirabilis prolipoprotein has a 19-amino acid signal peptide and a 59-amino acid lipoprotein sequence. In spite of the substantial differences in the amino acid sequence from the E. coli prolipoprotein, the P. mirabilis prolipoprotein is normally modified and processed in E. coli, and the resultant lipoprotein is assembled in the E. coli outer membrane as is the E. coli lipoprotein.  相似文献   

6.
7.
The complete amino acid sequence of DNA binding protein II from Bacillus stearothermophilus has been determined. The protein contains 90 amino acid residues and has a calculated Mr of 9716. The sequence is compared to homologous molecules from Escherichia coli, Thermoplasma acidophilum, and Pseudomonas aeruginosa (where only a partial sequence is available). The B. stearothermophilus molecule has 58% and 59% residues identical with the two forms of the E. coli protein and 32% with the T. acidophilum protein. There are totally conserved residues at positions 46-48 and 61-65 with an intervening cluster of basic amino acids in all four proteins.  相似文献   

8.
Escherichia coli contains several lipoproteins in addition to the major outer membrane lipoprotein (Ichihara, S., Hussain, M., and Mizushima, S. (1981) J. Biol. Chem. 256, 3125-3129). We cloned the gene for one of these new lipoproteins by using a synthetic 15-mer oligonucleotide probe identical to the DNA sequence at the signal peptide cleavage site of the major lipoprotein. The DNA sequence of the cloned gene revealed an open reading frame encoding a 272-amino acid protein with a signal peptide of 23 amino acid residues. The amino acid sequence of the putative cleavage site region of the signal peptide, -Leu-Leu-Ala-Gly-Cys-, is identical to that of the major lipoprotein. When the cloned gene was expressed in E. coli, a gene product with an apparent molecular weight of approximately 29,000 was identified which agrees well with the calculated molecular weight (27,800). The product was labeled with [3H]glycerol, and a precursor molecule of increased molecular weight was accumulated when cells were treated with globomycin, a specific inhibitor for prolipoprotein signal peptidase. We thus designed the gene product as lipoprotein-28. Unlike the major lipoprotein, lipoprotein-28 was found to be localized in the cytoplasmic membrane. A possible orientation of lipoprotein-28 in the E. coli envelope is discussed.  相似文献   

9.
The gene, spsB, encoding a type I signal peptidase has been cloned from the gram-positive eubacterium Staphylococcus aureus. The gene encodes a protein of 191 amino acid residues with a calculated molecular mass of 21,692 Da. Comparison of the protein sequence with those of known type I signal peptidases indicates conservation of amino acid residues known to be important or essential for catalytic activity. The enzyme has been expressed to high levels in Escherichia coli and has been demonstrated to possess enzymatic activity against E. coli preproteins in vivo. Experiments whereby the spsB gene was transferred to a plasmid that is temperature sensitive for replication indicate that spsB is an essential gene. We identified an open reading frame immediately upstream of the spsB gene which encodes a type I signal peptidase homolog of 174 amino acid residues with a calculated molecular mass of 20,146 Da that is predicted to be devoid of catalytic activity.  相似文献   

10.
Ruan RY  Kong JQ  Zheng XD  Zhang SX  Qin XY  Cheng KD  Wang JM  Wang W 《遗传》2010,32(11):1187-1194
细胞色素P450还原酶(Cytochrome P450 reductase,CPR)是细胞色素P450羟基化酶电子传递链的组成部分,在生物体内起着重要的电子传递作用。文章从中国红豆杉(Taxuswallichiana var. Chinensis)愈伤组织细胞中克隆CPR基因(TchCPR),TchCPR含有一个2154bp碱基的阅读框,编码717个氨基酸残基;在氨基酸水平上它与裸子植物细胞色素P450还原酶的同源性(82%)高于其他被子植物的细胞色素P450还原酶(74%)。在大肠杆菌BL21(DE3)中诱导表达了全长和从N-端截短不同数目氨基酸残基的6个融合肽段,经亲和层析纯化,分析了表达的不同长度融合蛋白的电子传递效率。结果表明截短长度大于61个氨基酸残基肽段的胞色素P450还原酶都能够诱导表达,在表达水平上无显著差异,而截短61个氨基酸的CPR融合蛋白电子传递的催化活性(1.6057nmol Cyt Cred/min/μg TchCPR融合蛋白)高于其他4个融合蛋白。  相似文献   

11.
Escherichia coli lipoproteins with Asp at position 2 remain in the inner membrane, whereas those having other amino acids are targeted to the outer membrane by the Lol system. However, inner membrane lipoproteins without Asp at position 2 are found in other Gram-negative bacteria. MexA of Pseudomonas aeruginosa, an inner membrane-specific lipoprotein involved in multidrug efflux, has Gly at position 2. To identify the residue or region of MexA that functions as an inner membrane retention signal, we constructed chimeric lipoproteins comprising various regions of MexA and an outer membrane lipoprotein, OprM, and analyzed their membrane localization. Lys and Ser at positions 3 and 4, respectively, were found to be critical for the inner membrane localization of MexA in P. aeruginosa. Substitution of these residues with Leu and Ile, which are present in OprM, was sufficient to target the chimeric lipoprotein to the outer membrane and to abolish the ability of MexA to confer drug resistance. The membrane specificity of a model lipoprotein, lipoMalE, a lipidated variant of the periplasmic maltose-binding protein of E. coli, was also determined by the residues at positions 3 and 4 in P. aeruginosa. In contrast to the widely accepted "+2 rule" for E. coli lipoproteins, these results suggest a new "+3, +4 rule" for lipoprotein sorting in P. aeruginosa, namely, the final destination of lipoproteins is determined by the residues at positions 3 and 4.  相似文献   

12.
The structural gene for the allosteric citrate synthase of Pseudomonas aeruginosa has been cloned from a genomic library by using the Escherichia coli citrate synthase gene as a hybridization probe under conditions of reduced stringency. Subcloning of portions of the original 10-kilobase-pair (kbp) clone led to isolation of the structural gene, with its promoter, within a 2,083-bp length of DNA flanked by sites for KpnI and BamHI. The nucleotide sequence of this fragment is presented; the inferred amino acid sequence was 70 and 76% identical, respectively, with the citrate synthase sequences from E. coli and Acinetobacter anitratum, two other gram-negative bacteria. DEAE-cellulose chromatography of P. aeruginosa citrate synthase from an E. coli host harboring the cloned P. aeruginosa gene gave three peaks of activity. All three enzyme peaks had subunit molecular weights of 48,000; the proteins were identical by immunological criteria and very similar in kinetics of substrate saturation and NADH inhibition. Because the cloned gene contained only one open reading frame large enough to encode a polypeptide of such a size, the three peaks must represent different forms of the same protein. A portion of the cloned P. aeruginosa gene was used as a hybridization probe under stringent conditions to identify highly homologous sequences in genomic DNA of a second strain classified as P. aeruginosa and isolates of P. putida, P. stutzeri, and P. alcaligenes. When crude extracts of each of these four isolates were mixed with antiserum raised against purified P. aeruginosa citrate synthase, however, only the P. alcaligenes extract cross-reacted.  相似文献   

13.
14.
A homolog of Pseudomonas aeruginosa penicillin-binding protein 3 (PBP3), named PBP3x in this study, was identified by using degenerate primers based on conserved amino acid motifs in the high-molecular-weight PBPs. Analysis of the translated sequence of the pbpC gene encoding this PBP3x revealed that 41 and 48% of its amino acids were identical to those of Escherichia coli and P. aeruginosa PBP3s, respectively. The downstream sequence of pbpC encoded convergently transcribed homologs of the E. coli soxR gene and the Mycobacterium bovis adh gene. The pbpC gene product was expressed from the T7 promoter in E. coli and was exported to the cytoplasmic membrane of E. coli cells and could bind [3H] penicillin. By using a broad-host-range vector, pUCP27, the pbpC gene was expressed in P. aeruginosa PAO4089. [3H]penicillin-binding competition assays indicated that the pbpC gene product had lower affinities for several PBP3-targeted beta-lactam antibiotics than P. aeruginosa PBP3 did, and overexpression of the pbpC gene product had no effect on the susceptibility to the PBP3-targeted antibiotics tested. By gene replacement, a PBP3x-defective interposon mutant (strain HC132) was obtained and confirmed by Southern blot analysis. Inactivation of PBP3x caused no changes in the cell morphology or growth rate of exponentially growing cells, suggesting that pbpC was not required for cell viability under normal laboratory growth conditions. However, the upstream sequence of pbpC contained a potential sigma(s) recognition site, and pbpC gene expression appeared to be growth rate regulated. [3H]penicillin-binding assays indicated that PBP3 was mainly produced during exponential growth whereas PBP3x was produced in the stationary phase of growth.  相似文献   

15.
16.
17.
The chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505 was cloned into broad-host-range vector pSUP104. The hybrid plasmid containing an 11.1-kilobase insert conferred chromate resistance and reduced uptake of chromate in P. aeruginosa PAO1. Resistance to chromate was not expressed in Escherichia coli. Contiguous 1.6- and 6.3-kilobase HindIII fragments from this plasmid hybridized to pUM505 but not to P. aeruginosa chromosomal DNA and only weakly to chromate resistance plasmids pLHB1 and pMG6. Further subcloning produced a plasmid with an insert of 2,145 base pairs, which was sequenced. Analysis of deletions revealed that a single open reading frame was sufficient to determine chromate resistance. This open reading frame encodes a highly hydrophobic polypeptide, ChrA, of 416 amino acid residues that appeared to be expressed in E. coli under control of the T7 promoter. No significant homology was found between ChrA and proteins in the amino acid sequence libraries, but 29% amino acid identity was found with the ChrA amino acid sequence for another chromate resistance determinant sequenced in this laboratory from an Alcaligenes eutrophus plasmid (A. Nies, D. Nies, and S. Silver, submitted for publication).  相似文献   

18.
The pheA gene encoding the bifunctional P-protein (chorismate mutase:prephenate dehydratase) was cloned from Pseudomonas stutzeri and sequenced. This is the first gene of phenylalanine biosynthesis to be cloned and sequenced from Pseudomonas. The pheA gene was expressed in Escherichia coli, allowing complementation of an E. coli pheA auxotroph. The enzymic and physical properties of the P-protein from a recombinant E. coli auxotroph expressing the pheA gene were identical to those of the native enzyme from P. stutzeri. The nucleotide sequence of the P. stutzeri pheA gene was 1095 base pairs in length, predicting a 365-residue protein product with an Mr of 40,844. Codon usage in the P. stutzeri pheA gene was similar to that of Pseudomonas aeruginosa but unusual in that cytosine and guanine were used at nearly equal frequencies in the third codon position. The deduced P-protein product showed sequence homology with peptide sequences of the E. coli P-protein, the N-terminal portion of the E. coli T-protein (chorismate mutase:prephenate dehydrogenase), and the monofunctional prephenate dehydratases of Bacillus subtilis and Corynebacterium glutamicum. A narrow range of values (26-35%) for amino acid matches revealed by pairwise alignments of monofunctional and bifunctional proteins possessing activity for prephenate dehydratase suggests that extensive divergence has occurred between even the nearest phylogenetic lineages.  相似文献   

19.
Spherical particles (SPs) of approximately 30 nm in diameter were found in the hyperthermophilic archaeon Pyrococcus furiosus. The SPs contained no nucleic acid and were composed of a single 39-kDa protein. The amino acid sequences of the amino-terminal and internal fragments were identical to portions of the deduced amino acid sequence of the putative 38.7-kDa protein encoded by the genome of P. furiosus, suggesting that the protein was expressed from the genome of P. furiosus. This possibility was confirmed by the observation that the 38.7-kDa protein expressed in Escherichia coli reacted specifically with the antibody against purified SPs, and it also formed SPs similar to those found in P. furiosus. Of the 345 amino acid residues in the 38.7-kDa protein, the amino-terminal 100 amino acids exhibited strong homology to putative proteins from other species of Pyrococcus, while the remaining 245 carboxy-terminal residues were not significantly homologous to putative proteins from other members of archaea. Thus, the carboxy-terminal region might be the product of a foreign gene that was incorporated relatively recently into the genome of P. furiosus.  相似文献   

20.
We previously reported the purification and characterization of a novel type of alkaline ceramidase from Pseudomonas aeruginosa strain AN17 (Okino, N., Tani, M., Imayama, S., and Ito, M. (1998) J. Biol. Chem. 273, 14368-14373). Here, we report the molecular cloning, sequencing, and expression of the gene encoding the ceramidase of this strain. Specific oligonucleotide primers were synthesized using the peptide sequences of the purified ceramidase obtained by digestion with lysylendopeptidase and used for polymerase chain reaction. DNA fragments thus amplified were used as probes to clone the gene encoding the ceramidase from a genomic library of strain AN17. The open reading frame of 2,010 nucleotides encoded a polypeptide of 670 amino acids including a signal sequence of 24 residues, 64 residues of which matched the amino acid sequence determined for the purified enzyme. The molecular weight of the mature enzyme was estimated to be 70,767 from the deduced amino acid sequence. Expression of the ceramidase gene in Escherichia coli, resulted in production of a soluble enzyme with the identical N-terminal amino acid sequence. Recombinant ceramidase was purified to homogeneity from the lysate of E. coli cells and confirmed to be identical to the Pseudomonas enzyme in its specificity and other enzymatic properties. No significant sequence similarities were found in other known functional proteins including human acid ceramidase. However, we found a sequence homologous to the ceramidase in hypothetical proteins encoded in Mycobacterium tuberculosis, Dictyostelium discoideum, and Arabidopsis thaliana. The homologue of the ceramidase gene was thus cloned from an M. tuberculosis cosmid and expressed in E. coli, and the gene was demonstrated to encode an alkaline ceramidase. This is the first report for the cloning of an alkaline ceramidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号