首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CaIPF19998, a functionally unknown gene in Candida albicans, was identified by its homology to Saccharomyces cerevisiae AIF1 gene, which is involved in cell apoptosis. In this study, ipf19998 null mutant was generated with the URA-blaster method and the construction of overexpression of CaIPF19998 was measured by quantitative RT-PCR. Minimal inhibitory concentrations determination showed that the ipf19998 overexpressed strains was more resistant to the antifungals tested than the wildtype (strain CAI4). The 2,3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-2Htetrazolium-5-carboxanilide reduction assay showed that CaIPF19998 could enhance the capacity of C. albicans biofilms formation. On Candida biofilms mode, intracellular levels of reactive oxygen species were significantly decreased and real-time RT-PCR showed that some important redox-related genes, including ALD5, CIT1, PIL1, AHP1, TRX1 and TSA1, were up-regulated in the CaIPF19998 overexpressed strains. These results demonstrate that CaIPF19998 played an important role in C. albicans biofilms formation and intracellular redox homeostasis, therefore led to a close relationship between CaIPF19998 and drug susceptibility in C. albicans.  相似文献   

2.
Chia-Yi Chien  Jin-Yuan Su 《FEBS letters》2009,583(9):1499-1504
The budding yeast CDC21 gene, which encodes thymidylate synthase, is crucial in the thymidylate biosynthetic pathway. Early studies revealed that high frequency of petites were formed in heat-sensitive cdc21 mutants grown at the permissive temperature. However, the molecular mechanism involved in such petite formation is largely unknown. Here we used a yeast cdc21-1 mutant to demonstrate that the mutant cells accumulated dUMP in the mitochondrial genome. When UNG1 (encoding uracil-DNA glycosylase) was deleted from cdc21-1, we found that the ung1Δ cdc21-1 double mutant reduced frequency of petite formation to the level found in wild-type cells. We propose that the initiation of Ung1p-mediated base excision repair in the uracil-laden mitochondrial genome in a cdc21-1 mutant is responsible for the mitochondrial petite mutations.  相似文献   

3.
Mao X  Cao F  Nie X  Liu H  Chen J 《FEBS letters》2006,580(11):2615-2622
The ability of dimorphic transition between yeast and hyphal forms in Candida albicans is one of the vital determinants for its pathogenicity and virulence. We isolated C. albicans SWI1 as a suppressor of the invasive growth defect in a Saccharomyces cerevisiae mutant. Expression of C. albicans SWI1 in S. cerevisiae partially complemented the growth defect of a swi1 mutant in the utilization of glycerol. Swi1 is in a complex with Snf2 in C. albicans, and both proteins are localized in the nucleus independent of the growth form. Deleting SWI1 or SNF2 in C. albicans prevented true hyphal formation and resulted in constitutive pseudohypha-like growth in all media examined. Furthermore, swi1/swi1 mutant was defective in hypha-specific gene expression and avirulent in a mouse model of systemic infection. These data strongly suggest the conserved Swi/Snf complex in C. albicans is required for hyphal development and pathogenicity.  相似文献   

4.
Candida albicans CDC4 is nonessential and plays a role in suppressing filamentous growth, in contrast to its evolutionary counterparts involved in the G1-S transition of the cell cycle. Genetic epistasis analysis has indicated that proteins besides Sol1 are targets of C. albicans Cdc4. Moreover, no formal evidence suggests that C. albicans Cdc4 functions through the ubiquitin E3 ligase of the Skp1-Cul1/Cdc53-F-box complex. To elucidate the role of C. albicans CDC4, C. albicans Cdc4-associated proteins were sought by affinity purification. A 6×His epitope-tagged C. albicans Cdc4 expressed from Escherichia coli was used in affinity purifications with the cell lysate of C. albicans cdc4 homozygous null mutant. Candida albicans Cdc4 and its associated proteins were resolved by SDS-PAGE and visualized by silver staining. The candidate proteins were recovered and trypsin-digested to generate MALDI-TOF spectra profiles, which were used to search against those of known proteins in the database to reveal their identities. Two out of four proteins encoded by GPH1 and THR1 genes were further verified to interact with C. albicans Cdc4 using a yeast two-hybrid assay. We conclude that in vitro affinity purification using C. albicans Cdc4 generated from E. coli as the bait and proteins from cell lysate of C. albicans cdc4 homozygous null mutant as a source of prey permit the identification of novel proteins that physically interact and functionally associate with C. albicans Cdc4.  相似文献   

5.
Resistance to azole antifungal drugs in clinical isolates of the human fungal pathogen Candida albicans is often caused by constitutive overexpression of the CDR1 gene, which encodes a multidrug efflux pump of the ABC transporter superfamily. To understand the relevance of a recently identified negative regulatory element (NRE) in the CDR1 promoter for the control of CDR1 expression in the clinical scenario, we investigated the effect of mutation or deletion of the NRE on CDR1 expression in two matched pairs of azole-sensitive and resistant clinical isolates of C. albicans. Expression of GFP or lacZ reporter genes from the wild type CDR1 promoter was much higher in the azole-resistant C. albicans isolates than in the azole-susceptible isolates, reflecting the known differences in CDR1 expression in these strains. Deletion or mutation of the NRE resulted in enhanced reporter gene expression in azole-sensitive strains, but did not further increase the already high CDR1 promoter activity in the azole-resistant strains. In agreement with these findings, electrophoretic mobility shift assays showed a reduced binding to the NRE of nuclear extracts from the resistant C. albicans isolates as compared with extracts from the sensitive isolates. These results demonstrate that the NRE is involved in maintaining CDR1 expression at basal levels and that this repression is overcome in azole-resistant clinical C. albicans isolates, resulting in constitutive CDR1 overexpression and concomitant drug resistance.  相似文献   

6.
Bcl-2 family proteins have been reported previously to play important roles in the mitochondrial apoptotic pathway. Particularly, Bmbuffy has been identified as a key homologue of Bcl-2 in silkworm; however, its exact function is unknown. In this study, we investigated the role of Bmbuffy in hydroxycamptothecine (HCPT)-induced apoptosis of BmN-SWU1 cells. By conducting confocal microscopy studies, we found that Bmbuffy is located on the outer membrane of mitochondria and endoplasmic reticulum (ER). Furthermore, we discovered that the hydrophobic transmembrane domain at the COOH terminus is a putative anchor for the subcellular localization of Bmbuffy. Overexpression of Bmbuffy inhibited cytochrome c release, activation of caspase-3 and cell apoptosis, while RNAi-mediated silencing of Bmbuffy promoted apoptosis. In the absence of a hydrophobic membrane anchor, we revealed that Bmbuffy is unable to block apoptosis. These results indicate that Bmbuffy acts as an anti-apoptotic protein, located on the mitochondrial outer membrane and is involved in the mitochondrial apoptotic pathway. Moreover, in HCPT-induced apoptosis, we showed that the translocation of endogenous Bmp53 from the nucleus to the mitochondria is a slow and progressive process, followed by cytochrome c release. This suggests that mitochondrial Bmp53 accumulation may contribute to membrane permeability. The co-localization of Bmp53 and Bmbuffy suggests the interaction of the two proteins, which was further confirmed by Co-IP assay. In addition, overexpression of Bmp53 increased cytochrome c release and the cell apoptotic rate, whereas Bmbuffy overexpression blocked these. All the data suggest that Bmbuffy functions as an anti-apoptotic protein and interacts with Bmp53 in HCPT-induced apoptosis of silkworm cells.  相似文献   

7.
The two Parkinson’s disease (PD) genes, PTEN-induced kinase 1 (PINK1) and parkin, are linked in a common pathway which affects mitochondrial integrity and function. However, it is still not known what this pathway does in the mitochondria. Therefore, we investigated its physiological function in Drosophila. Because Drosophila PINK1 and parkin mutants show changes in mitochondrial morphology in both indirect flight muscles and dopaminergic neurons, we here investigated whether the PINK1-Parkin pathway genetically interacts with the regulators of mitochondrial fusion and fission such as Drp1, which promotes mitochondrial fission, and Opa1 or Marf, which induces mitochondrial fusion. Surprisingly, DrosophilaPINK1 and parkin mutant phenotypes were markedly suppressed by overexpression of Drp1 or downregulation of Opa1 or Marf, indicating that the PINK1-Parkin pathway regulates mitochondrial remodeling process in the direction of promoting mitochondrial fission. Therefore, we strongly suggest that mitochondrial fusion and fission process could be a prominent therapeutic target for the treatment of PD.  相似文献   

8.
9.
Candida albicans is an opportunistic human pathogen with the ability to differentiate and grow in filamentous forms and exist as biofilms. The biofilms are a barrier to treatment as they are often resistant to the antifungal drugs. In this study, we investigated the antifungal activity of allicin, an active compound of garlic on various isolates of C. albicans. The effect of allicin on biofilm production in C. albicans as compared to fluconazole, an antifungal drug, was investigated using the tetrazolium (XTT) reduction-dependent growth and crystal violet assays as well as scanning electron microscopy (SEM). Allicin-treated cells exhibited significant reduction in biofilm growth (p<0.05) compared to fluconazole-treated and also growth control cells. Moreover, observation by SEM of allicin and fluconazole-treated cells confirmed a dose-dependent membrane disruption and decreased production of organisms. Finally, the expression of selected genes involved in biofilm formation such as HWP1 was evaluated by semi-quantitative RT-PCR and relative real time RT-PCR. Allicin was shown to down-regulate the expression of HWP1.  相似文献   

10.
The fumarate reductases from S. frigidimarina NCIMB400 and S. oneidensis MR-1 are soluble and monomeric enzymes located in the periplasm of these bacteria. These proteins display two redox active domains, one containing four c-type hemes and another containing FAD at the catalytic site. This arrangement of single-electron redox co-factors leading to multiple-electron active sites is widespread in respiratory enzymes. To investigate the properties that allow a chain of single-electron co-factors to sustain the activity of a multi-electron catalytic site, redox titrations followed by NMR and visible spectroscopies were applied to determine the microscopic thermodynamic parameters of the hemes. The results show that the redox behaviour of these fumarate reductases is similar and dominated by a strong interaction between hemes II and III. This interaction facilitates a sequential transfer of two electrons from the heme domain to FAD via heme IV.  相似文献   

11.
Phytophthora stricta sp. nov. and Phytophthora macilentosa sp. nov. are described based on morphological, physiological and molecular characters in this study. Phytophthora stricta represents a previously unknown clade in the rRNA internal transcribed spacer (ITS)-based phylogeny. Phytophthora macilentosa, along with nine other species, consistently forms a high temperature-tolerant cluster within ITS clade 9. These observations are supported by the sequence analysis of the mitochondrial cytochrome c oxidase 1 gene. Both species are heterothallic and all examined isolates are A1 mating type. Phytophthora stricta produces nonpapillate and slightly caducous sporangia. This species is named after its characteristic constrictions on sporangiophores. Phytophthora macilentosa produces nonpapillate and noncaducous sporangia, which are mostly elongated obpyriform with a high length to breadth ratio. Both species were recovered from irrigation water of an ornamental plant nursery in Mississippi, USA and P. stricta was also recovered from stream water in Virginia, USA.  相似文献   

12.
Elisa Fadda 《BBA》2008,1777(3):277-284
As part of the mitochondrial respiratory chain, cytochrome c oxidase utilizes the energy produced by the reduction of O2 to water to fuel vectorial proton transport. The mechanism coupling proton pumping to redox chemistry is unknown. Recent advances have provided evidence that each of the four observable transitions in the complex catalytic cycle consists of a similar sequence of events. However, the physico-chemical basis underlying this recurring sequence has not been identified. We identify this recurring pattern based on a comprehensive model of the catalytic cycle derived from the analysis of oxygen chemistry and available experimental evidence. The catalytic cycle involves the periodic repetition of a sequence of three states differing in the spatial distribution of charge in the active site: [0|1], [1|0], and [1|1], where the total charge of heme a and the binuclear center appears on the left and on the right, respectively. This sequence recurs four times per turnover despite differences in the redox chemistry. This model leads to a simple, robust, and reproducible sequence of electron and proton transfer steps and rationalizes the pumping mechanism in terms of electrostatic coupling of proton translocation to redox chemistry. Continuum electrostatic calculations support the proposed mechanism and suggest an electrostatic origin for the decoupled and inactive phenotypes of ionic mutants in the principal proton-uptake pathway.  相似文献   

13.
Nitrosative stress has various pathophysiological implications. We here present a detailed characterization on the effect of nitrosative stress in Saccharomyces cerevisiae wild-type (Y190) and its isogenic flavohemoglobin mutant (Δyhb1) strain grown in presence of non fermentable carbon source. On addition of sub-toxic dose of nitrosating agent both the strains showed microbiostatic effect. Cellular respiration was found to be significantly affected in both the strains in presence sodium nitroprusside. Although there was no alteration in mitochondrial permeability potential changes and reactive oxygen species production in both the strains but the cellular redox status is differentially regulated in Δyhb1 strain both in cytosol and in mitochondria indicating cellular glutathione is the major player in absence of flavohemoglobin. We also found important role(s) of various redox active enzymes like glutathione reductase and catalase in protection against nitrosative stress. This is the first report of its kind where the effect of nitrosative stress has been evaluated in S. cerevisiae cytosol as well as in mitochondria under respiratory proficient conditions.  相似文献   

14.
The cytochrome bc(1) complex catalyzes electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which electron transfer is linked to proton translocation across the inner mitochondrial membrane. In the Q cycle mechanism proton translocation is the net result of topographically segregated reduction of quinone and reoxidation of quinol on opposite sides of the membrane, with protons being carried across the membrane as hydrogens on the quinol. The linkage of proton chemistry to electron transfer during quinol oxidation and quinone reduction requires pathways for moving protons to and from the aqueous phase and the hydrophobic environment in which the quinol and quinone redox reactions occur. Crystal structures of the mitochondrial cytochrome bc(1) complexes in various conformations allow insight into possible proton conduction pathways. In this review we discuss pathways for proton conduction linked to ubiquinone redox reactions with particular reference to recently determined structures of the yeast bc(1) complex.  相似文献   

15.

Background

Plagiochin E (PLE) is an antifungal macrocyclic bis(bibenzyl) isolated from liverwort Marchantia polymorpha L. Its antifungal mechanism is unknown. To elucidate the mechanism of action, its effect on mitochondria function in Candida albicans was studied.

Methods

We assayed the mitochondrial membrane potential (mtΔψ) using rhodamine 123, measured ATP level in mitochondria by HPLC, and detected the activities of mitochondrial F0F1-ATPase and dehydrogenases. Besides, the mitochondrial dysfunction-induced reactive oxygen species (ROS) production was determined by a fluorometric assay, and the effects of antioxidant L-cysteine on PLE-induced ROS production and the antifungal effect of PLE on C. albicans were also investigated.

Results

Exposure to PLE resulted in an elevation of mtΔψ, and a decrease of ATP level in mitochondria. The ATP depletion owed to PLE-induced enhancement of mitochondrial F0F1-ATPase and inhibition of the mitochondrial dehydrogenases. These dysfunctions of mitochondria caused ROS accumulation in C. albicans, and this increase in the level of ROS production and PLE-induced decrease in cell viability were prevented by addition of L-cysteine, indicating that ROS was an important mediator of the antifungal action of PLE.

Conclusions

PLE exerts its antifungal activity through mitochondrial dysfunction-induced ROS accumulation in C. albicans.

General significance

The effect of PLE on the mitochondria function in C. albicans was assayed for the first time. These results would conduce to elucidate its underlying antifungal mechanism.  相似文献   

16.
We conducted a differential identification of Taenia asiatica and Taenia saginata, through the mapping of mitochondrial genomes and the sequencing of the cox1 and cob genes. The entire mitochondrial genomes of T. asiatica and T. saginata were amplified by long-extension PCR and cloned; each was approximately 14 kb in size. Restriction maps of T. asiatica and T. saginata mitochondrial genomes were then constructed using 13 restriction enzymes. The resulting restriction patterns enable us to estimate their genetic divergence at 4.8%. The actual sequence divergence was computed 4.5% from the cox1 gene, and 4.1% from the cob gene. These results support the designation of T. asiatica as a separate species from T. saginata.  相似文献   

17.
In this work, we evaluated the effects of cadmium (Cd) on the antioxidant defense system responses and the role of nitrate reductase (NR) in the redox balance maintenance in Bradyrhizobium japonicum strains. For that, B. japonicum USDA110 and its NR defective mutant strain (GRPA1) were used. Results showed that the addition of 10 μM Cd did not modify the aerobic growth of the wild type strain while the mutant strain was strongly affected. Anaerobic growth revealed that only the parental strain was able to grow under this condition. Cd reduced drastically the NR activity in B. japonicum USDA110 and increased lipid peroxide content in both strains. Cd decreased reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio in B. japonicum USDA110 although, a significant increased was observed in the mutant GRPA1. GSH-related enzymes were induced by Cd, being more evident the increase in the mutant strain. This different behavior observed between strains suggests that NR enzyme plays an important role in the redox balance maintenance in B. japonicum USDA 110 exposed to Cd.  相似文献   

18.
The nuclear gene MIP1 encodes the mitochondrial DNA polymerase responsible for replicating the mitochondrial genome in Saccharomyces cerevisiae. A number of other factors involved in replicating and segregating the mitochondrial genome are yet to be identified. Here, we report that a bacterial two-hybrid screen using the mitochondrial polymerase, Mip1p, as bait identified the yeast protein Sed1p. Sed1p is a cell surface protein highly expressed in the stationary phase. We find that several modified forms of Sed1p are expressed and the largest of these forms interacts with the mitochondrial polymerase in vitro. Deletion of SED1 causes a 3.5-fold increase in the rate of mitochondrial DNA point mutations as well as a 4.3-fold increase in the rate of loss of respiration. In contrast, we see no change in the rate of nuclear point mutations indicating the specific role of Sed1p function in mitochondrial genome stability. Indirect immunofluorescence analysis of Sed1p localization shows that Sed1p is targeted to the mitochondria. Moreover, Sed1p is detected in purified mitochondrial fractions and the localization to the mitochondria of the largest modified form is insensitive to the action of proteinase K. Deletion of the sed1 gene results in a reduction in the quantity of Mip1p and also affects the levels of a mitochondrially-expressed protein, Cox3p. Our results point towards a role for Sed1p in mitochondrial genome maintenance.  相似文献   

19.
Fago A  Mathews AJ  Moens L  Dewilde S  Brittain T 《FEBS letters》2006,580(20):4884-4888
Previously identified, potentially neuroprotective reactions of neuroglobin require the existence of yet unknown redox partners. We show here that the reduction of ferric neuroglobin by cytochrome b(5) is relatively slow (k=6 x 10(2)M(-1)s(-1) at pH 7.0) and thus is unlikely to be of physiological significance. In contrast, the reaction between ferrous neuroglobin and ferric cytochrome c is very rapid (k=2 x 10(7)M(-1)s(-1)) with an apparent overall equilibrium constant of 1 microM. Based on this data we propose that ferrous neuroglobin may well play a role in preventing apoptosis.  相似文献   

20.
1. The effect of fuscin on the mitochondrial oxidation of pyruvate plus malate, of succinate and of ascorbate plus tetramethyl-p-phenylenediamine (TMPD) and on the redox changes of succinate-reducible cytochromes b and c was investigated using tightly-coupled ox-neck muscle mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号