首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Overt 24-h rhythmicity is composed of both exogenous and endogenous components, reflecting the product of multiple (periodic) feedback loops with a core pacemaker at their center. Researchers attempting to reveal the endogenous circadian (near 24-h) component of rhythms commonly conduct their experiments under constant environmental conditions. However, even under constant environmental conditions, rhythmic changes in behavior, such as food intake or the sleep-wake cycle, can contribute to observed rhythmicity in many physiological and endocrine variables. Assessment of characteristics of the core circadian pacemaker and its direct contribution to rhythmicity in different variables, including rhythmicity in gene expression, may be more reliable when such periodic behaviors are eliminated or kept constant across all circadian phases. This is relevant for the assessment of the status of the circadian pacemaker in situations in which the sleep-wake cycle or food intake regimes are altered because of external conditions, such as in shift work or jet lag. It is also relevant for situations in which differences in overt rhythmicity could be due to changes in either sleep oscillatory processes or circadian rhythmicity, such as advanced or delayed sleep phase syndromes, in aging, or in particular clinical conditions. Researchers studying human circadian rhythms have developed constant routine protocols to assess the status of the circadian pacemaker in constant behavioral and environmental conditions, whereas this technique is often thought to be unnecessary in the study of animal rhythms. In this short review, the authors summarize constant routine methodology and what has been learned from constant routines and argue that animal and human circadian rhythm researchers should (continue to) use constant routines as a step on the road to getting through to central and peripheral circadian oscillators in the intact organism.  相似文献   

2.
Over recent decades, changes in zebrafish (Danio rerio) behaviour have become popular quantitative indicators in biomedical studies. The circadian rhythms of behavioural processes in zebrafish are known to enable effective utilization of energy and resources, therefore attracting interest in zebrafish as a research model. This review covers a variety of circadian behaviours in this species, including diurnal rhythms of spawning, feeding, locomotor activity, shoaling, light/dark preference, and vertical position preference. Changes in circadian activity during zebrafish ontogeny are reviewed, including ageing-related alterations and chemically induced variations in rhythmicity patterns. Both exogenous and endogenous sources of inter-individual variability in zebrafish circadian behaviour are detailed. Additionally, we focus on different environmental factors with the potential to entrain circadian processes in zebrafish. This review describes two principal ways whereby diurnal behavioural rhythms can be entrained: (i) modulation of organismal physiological state, which can have masking or enhancing effects on behavioural endpoints related to endogenous circadian rhythms, and (ii) modulation of period and amplitude of the endogenous circadian rhythm due to competitive relationships between the primary and secondary zeitgebers. In addition, different peripheral oscillators in zebrafish can be entrained by diverse zeitgebers. This complicated orchestra of divergent influences may cause variability in zebrafish circadian behaviours, which should be given attention when planning behavioural studies.  相似文献   

3.
Thermoregulation and diurnal rhythms in 1-week-old rat pups   总被引:1,自引:0,他引:1  
This paper reviews the ontogeny of thermoregulation and diurnal rhythmicity in rats. Additionally, original data are presented that indicate the emergence of an endogenous circadian core temperature rhythm during the first postnatal week. Despite neurological immaturity, newborn rats display autonomic and behavioral thermoregulatory responses within 24 h of birth. Their "biological clock" is already running before birth. The thermal environment of pups changes cyclically owing to diurnal variations in maternal behavior, but the core temperatures of 1-week-old pups huddling in the absence of the dam also show marked diurnal fluctuations. Five- to 8-day-old lean Zucker rat pups artificially reared in the absence of 24-h cycles of ambient temperature and food intake show diurnal changes in core temperature similar to those in huddling mother-reared pups. Diurnal core temperature changes, evident only when regulatory effectors are not overwhelmed, are one of the first self-maintained diurnal rhythms to appear. Because thermoregulation and circadian rhythmicity both appear before maturation of the neural networks believed to be critical for their control in adult animals, studying the immature rat might increase our understanding of the control of these processes in the more complex mature central nervous system.  相似文献   

4.
Among all the metabolites present in the plasma, lipids, mainly triacylglycerol and diacylglycerol, show extensive circadian rhythms. These lipids are transported in the plasma as part of lipoproteins. Lipoproteins are synthesized primarily in the liver and intestine and their production exhibits circadian rhythmicity. Studies have shown that various proteins involved in lipid absorption and lipoprotein biosynthesis show circadian expression. Further, intestinal epithelial cells express circadian clock genes and these genes might control circadian expression of different proteins involved in intestinal lipid absorption. Intestinal circadian clock genes are synchronized by signals emanating from the suprachiasmatic nuclei that constitute a master clock and from signals coming from other environmental factors, such as food availability. Disruptions in central clock, as happens due to disruptions in the sleep/wake cycle, affect intestinal function. Similarly, irregularities in temporal food intake affect intestinal function. These changes predispose individuals to various metabolic disorders, such as metabolic syndrome, obesity, diabetes, and atherosclerosis. Here, we summarize how circadian rhythms regulate microsomal triglyceride transfer protein, apoAIV, and nocturnin to affect diurnal regulation of lipid absorption.  相似文献   

5.
Several studies have suggested that disruptions in circadian rhythms contribute to the pathophysiology of multiple psychiatric diseases, including drug addiction. In fact, a number of the genes involved in the regulation of circadian rhythms are also involved in modulating the reward value for drugs of abuse, like cocaine. Thus, we wanted to determine the effects of chronic cocaine on the expression of several circadian genes in the Nucleus Accumbens (NAc) and Caudate Putamen (CP), regions of the brain known to be involved in the behavioral responses to drugs of abuse. Moreover, we wanted to explore the mechanism by which these genes are regulated following cocaine exposure. Here we find that after repeated cocaine exposure, expression of the Period (Per) genes and Neuronal PAS Domain Protein 2 (Npas2) are elevated, in a somewhat regionally selective fashion. Moreover, NPAS2 (but not CLOCK (Circadian Locomotor Output Cycles Kaput)) protein binding at Per gene promoters was enhanced following cocaine treatment. Mice lacking a functional Npas2 gene failed to exhibit any induction of Per gene expression after cocaine, suggesting that NPAS2 is necessary for this cocaine-induced regulation. Examination of Per gene and Npas2 expression over twenty-four hours identified changes in diurnal rhythmicity of these genes following chronic cocaine, which were regionally specific. Taken together, these studies point to selective disruptions in Per gene rhythmicity in striatial regions following chronic cocaine treatment, which are mediated primarily by NPAS2.  相似文献   

6.
Bipolar disorder (BD) is a severe and common psychiatric disorder. BD pathogenesis, clinical manifestations and relapses are associated with numerous circadian rhythm abnormalities. Lithium (Li) is the first-line treatment in BD, and its therapeutic action has been related to its ability to alter circadian rhythms. We systematically searched the PubMed database until January 2016, aiming to critically examine published studies investigating direct and indirect effects of Li on circadian rhythms. The results, from the 95 retained studies, indicated that Li: acts directly on the molecular clocks; delays the phase of sleep–wakefulness rhythms and the peak elevation of diurnal cycle body temperature; reduces the amplitude and shortens the duration of activity rhythms and lengthens free-running rhythms. Chronic Li treatment stabilizes free-running activity rhythms, by improving day-to-day rhythmicity of the activity, with effects that appear to be dose related. Pharmacogenetics demonstrate several associations of Li’s response with circadian genes (NR1D1, GSK3β, CRY1, ARNTL, TIM, PER2). Finally, Li acts on the retinal-hypothalamic pineal pathway, influencing light sensitivity and melatonin secretion. Li is a highly investigated chronobiologic agent, and although its chronobiological effects are not completely understood, it seems highly likely that they constitute an inherent component of its therapeutic action in the treatment of mood disorders.  相似文献   

7.
Insulinoma-associated protein (IA)-2 and IA-2β are transmembrane proteins involved in neurotransmitter secretion. Mice with targeted disruption of both IA-2 and IA-2β (double-knockout, or DKO mice) have numerous endocrine and physiological disruptions, including disruption of circadian and diurnal rhythms. In the present study, we have assessed the impact of disruption of IA-2 and IA-2β on molecular rhythms in the brain and peripheral oscillators. We used in situ hybridization to assess molecular rhythms in the hypothalamic suprachiasmatic nuclei (SCN) of wild-type (WT) and DKO mice. The results indicate significant disruption of molecular rhythmicity in the SCN, which serves as the central pacemaker regulating circadian behavior. We also used quantitative PCR to assess gene expression rhythms in peripheral tissues of DKO, single-knockout, and WT mice. The results indicate significant attenuation of gene expression rhythms in several peripheral tissues of DKO mice but not in either single knockout. To distinguish whether this reduction in rhythmicity reflects defective oscillatory function in peripheral tissues or lack of entrainment of peripheral tissues, animals were injected with dexamethasone daily for 15 days, and then molecular rhythms were assessed throughout the day after discontinuation of injections. Dexamethasone injections improved gene expression rhythms in liver and heart of DKO mice. These results are consistent with the hypothesis that peripheral tissues of DKO mice have a functioning circadian clockwork, but rhythmicity is greatly reduced in the absence of robust, rhythmic physiological signals originating from the SCN. Thus, IA-2 and IA-2β play an important role in the regulation of circadian rhythms, likely through their participation in neurochemical communication among SCN neurons.  相似文献   

8.
In spaceflight human circadian rhythms and sleep patterns are likely subject to change, which consequently disturbs human physiology, cognitive abilities and performance efficiency. However, the influence of microgravity on sleep and circadian clock as well as the underlying mechanisms remain largely unknown. Placing volunteers in a prone position, whereby their heads rest at an angle of −6° below horizontal, mimics the microgravity environment in orbital flight. Such positioning is termed head-down bed rest (HDBR). In this work, we analysed the influence of a 45-day HDBR on physiological diurnal rhythms. We examined urinary electrolyte and hormone excretion, and the results show a dramatic elevation of cortisol levels during HDBR and recovery. Increased diuresis, melatonin and testosterone were observed at certain periods during HDBR. In addition, we investigated the changes in urination and defecation frequencies and found that the rhythmicity of urinary frequency during lights-off during and after HDBR was higher than control. The grouped defecation frequency data exhibits rhythmicity before and during HDBR but not after HDBR. Together, these data demonstrate that HDBR can alter a number of physiological processes associated with diurnal rhythms.  相似文献   

9.
10.
11.
The concept of homeostasis (i.e., constancy of the milieu interne) has long dominated the teaching and practice of medicine. Concepts and findings from chronobiology, the scientific study of biological rhythms, challenge this construct. Biological processes and functions are not at all constant; rather, they are organized in time as rhythms with period lengths that range in duration from as short as a second or less to as long as a year. It is the body's circadian (24h) rhythms that have been researched most intensely. The peak and trough of these rhythms are ordered rather precisely in time to support the biological requirements of activity during the day and sleep at night. The timing of the peak and trough plus the magnitude of variation (amplitude) of physiological and biochemical functions during the 24h give rise to predictable-in-time, day-night patterns in the manifestation and exacerbation of many common medical conditions. Circadian rhythms also can influence the response of patients to diagnostic tests and therapeutic interventions according to their timing with reference to body rhythms. Rhythms in the pathophysiology of medical conditions and patient tolerance to medications constitute the basis for chronotherapeutics, the timing of treatment in relation to biological rhythm determinants as a means of optimizing beneficial effects and safety. The article discusses recent advances in medical chronobiology and chronotherapeutics and their relevance to clinical medicine in general and the management of asthma in particular. Indeed, since asthma is a disease that exhibits rather profound circadian rhythmicity, investigation of its pathophysiology and therapy necessitates a chronobiologic approach.  相似文献   

12.
The concept of homeostasis (i.e., constancy of the milieu interne) has long dominated the teaching and practice of medicine. Concepts and findings from chronobiology, the scientific study of biological rhythms, challenge this construct. Biological processes and functions are not at all constant; rather, they are organized in time as rhythms with period lengths that range in duration from as short as a second or less to as long as a year. It is the body's circadian (24h) rhythms that have been researched most intensely. The peak and trough of these rhythms are ordered rather precisely in time to support the biological requirements of activity during the day and sleep at night. The timing of the peak and trough plus the magnitude of variation (amplitude) of physiological and biochemical functions during the 24h give rise to predictable-in-time, day-night patterns in the manifestation and exacerbation of many common medical conditions. Circadian rhythms also can influence the response of patients to diagnostic tests and therapeutic interventions according to their timing with reference to body rhythms. Rhythms in the pathophysiology of medical conditions and patient tolerance to medications constitute the basis for chronotherapeutics, the timing of treatment in relation to biological rhythm determinants as a means of optimizing beneficial effects and safety. The article discusses recent advances in medical chronobiology and chronotherapeutics and their relevance to clinical medicine in general and the management of asthma in particular. Indeed, since asthma is a disease that exhibits rather profound circadian rhythmicity, investigation of its pathophysiology and therapy necessitates a chronobiologic approach.  相似文献   

13.
14.
Diurnal animals occupy a different temporal niche from nocturnal animals and are consequently exposed to different amounts of light as well as different dangers. Accordingly, some variation exists in the way that diurnal animals synchronize their internal circadian clock to match the external 24-hour daily cycle. First, though the brain mechanisms underlying photic entrainment are very similar among species with different daily activity patterns, there is evidence that diurnal animals are less sensitive to photic stimuli compared to nocturnal animals. Second, stimuli other than light that synchronize rhythms (i.e. nonphotic stimuli) can also entrain and phase shift daily rhythms. Some of the rules that govern nonphotic entrainment in nocturnal animals as well as the brain mechanisms that control nonphotic influences on rhythms do not appear to apply to diurnal animals, however. Some evidence supports the idea that arousal or activity plays an important role in entraining rhythms in diurnal animals, either during the light (active) or dark (inactive) phases, though no consistent pattern is seen. GABAergic stimulation induces phase shifts during the subjective day in both diurnal and nocturnal animals. In diurnal Arvicanthis niloticus (Nile grass rats), SCN GABAA receptor activation at this time results in phase delays while in nocturnal animals phase advances are induced. It appears that the effect of GABA at this circadian phase results from the inhibition of period gene expression in both diurnal and nocturnal animals. Nonetheless, the resulting phase shifts are in opposite directions. It is not known what stimuli or behaviours ultimately induce changes in GABA activity in the SCN that result in alterations of circadian phase in diurnal grass rats. Taken together, studies such as these suggest that it may be problematic to apply the principles governing nocturnal nonphotic entrainment and its underlying mechanisms to diurnal species including humans.  相似文献   

15.
Trees, perennial phanerophytes, display a rich variety of rhythmic phenomena. These are either due to exclusive environmental entrainment or due to the functioning of endogenous oscillators independent of the environment. Both types of rhythms are covered in this review. Purely environment controlled rhythms may be considered as a prelude to endogenous rhythms. Environment controlled rhythms discussed are (i) the diurnal rhythms of nyctinastic and heliotropic leaf movements and oscillatory phenomena of photosynthesis, such as the midday depression and Crassulacean acid metabolism (CAM), and (ii) the annual rhythms of annual growth ring formation, autumnal leaf senescence, over wintering mechanisms and flowering. Among the diurnal rhythms, nyctinastic movements and CAM are also free-running endogenous rhythms showing the operation of circadian clocks in trees. In leaf senescence, over wintering, and flowering control, photoperiod sensing is involved which suggests the participation of endogenous clocks. A question asked is if diurnal and annual rhythms are mechanistically correlated. Evidently, phenological phenomena based on photoperiodism (as dependent on measurement of night length) are co-ordinately regulated by the phytochrome system and the circadian clocks and many aspects of annual developments and over wintering are linked to photoperiodism. The existence in trees of circadian clock genes as known to be anchored in the genome of A. thaliana can be assessed by attempts of alignment with the sequenced genome of Populus or by isolating cDNA clones from trees to check them against the genome of A. thaliana. At extreme latitudes near the equator and north of the polar circle trees also display photoperiod-independent phenological phenomena. In the polar region, total irradiance of red and far red light could possibly be involved and the signalling pathway then involves phytochrome, and thus, may still be similar to that of photoperiodism. At the equator, total daily light irradiance received or sensing the dynamics of daily changes in solar irradiance are essential and it remains enigmatic whether signalling cascades are either attached to the circadian clocks in a still unknown way or totally independent of circadian clocks.  相似文献   

16.
Previous studies have demonstrated that the mammalian retina contains a circadian clock system that controls several retinal functions. In mammals the location of the retinal circadian clock is unknown whereas, in non-mammalian vertebrates, earlier work has demonstrated that photoreceptor cells contain the circadian clock. New experimental evidence has suggested that in mammals the retinal circadian clock may be located outside the photoreceptor cells. In this study we report that circadian rhythms in Aa-nat mRNA (in vivo) and melatonin synthesis (in vitro) are still present in the retina of rats lacking photoreceptors. The circadian pacemaker(s) controlling such rhythms is probably located in kainic acid sensitive neurons in the inner retina since kainic acid injections abolished the rhythmicity. These data are the first direct demonstration that circadian rhythmicity in the mammalian retina can be generated independently from the photoreceptors and the suprachiasmatic nuclei of the hypothalamus.  相似文献   

17.
The master circadian pacemaker emits signals that trigger organ-specific oscillators and, therefore, constitutes a basic biological process that enables organisms to anticipate daily environmental changes by adjusting behavior, physiology, and gene regulation. Although circadian rhythms are well characterized on a physiological level, little is known about circadian modulations of higher cognitive functions. Thus, we investigated circadian repercussions on language performance at the level of minimal syntactic processing by means of German noun phrases in ten young healthy men under the unmasking conditions of a 40 h constant-routine protocol. Language performance for both congruent and incongruent noun phrases displayed a clear diurnal rhythm with a peak performance decrement during the biological night. The nadirs, however, differed such that worst syntactic processing of incongruent noun phrases occurred 3 h earlier (07:00 h) than that of congruent noun phrases (10:00 h). Our results indicate that language performance displays an internally generated circadian rhythmicity with optimal time for parsing language between 3 to 6 h after the habitual wake time, which usually corresponds to 10:00–13:00 h. These results may have important ramifications for establishing optimal times for shiftwork changes or testing linguistically impaired people.  相似文献   

18.
19.
This review discusses the experimental evidence indicating that arthritis disrupts circadian organization, which was mainly derived from animal studies employing Freund's complete mycobacterial adjuvant (FCA). The defense response to antigenic challenge, mediated in part by cytokines, includes changes in chronobiological central nervous system function, like depressed daily activity, superficial sleep or anorexia. Interferon (IFN)-gamma receptors are detectable in the central circadian pacemaker, the hypothalamic suprachiasmatic nuclei, at a time when the capacity for photic entrainment of the pacemaker became established. The disruptive effects of the systemic injection of IFN on the circadian rhythms of locomotor activity, body temperature and clock-gene mRNA expression have been documented. In the last few years we have examined a number of immune and neuroendocrine circadian rhythms in FCA-injected rats, both in the preclinical phase of arthritis (2-3 days after FCA injection) as well as in the acute phase of the disease (18 days after FCA injection). In arthritic rats, the 24-hour organization of immune and neuroendocrine responses becomes altered. A hormonal pathway involving the circadian secretion of melatonin and a purely neural pathway including, as a motor leg, the autonomic nervous system innervating the lymph nodes were identified. The significant effects of the immune-mediated inflammatory response on the diurnal rhythmicity of adenohypophysial and hypophysiotropic hormones occurred in arthritic rats. Melatonin treatment prevented the alteration in 24-hour rhythms of serum ACTH, prolactin and luteinizing hormone in rats injected with FCA. In addition, melatonin pretreatment prevented the alteration in the 24-hour variation in hypothalamic serotonin and dopamine turnover during the preclinical phase of Freund's adjuvant arthritis in rats. Some pinealectomy-induced immune changes in arthritic rats were also prevented by physiological concentrations of melatonin. Melatonin may play the role of an 'internal synchronizer' for the immune system.  相似文献   

20.
A number of studies in recent years have attempted to elucidate the effects of learning and environmental change on brain biochemistry, especially protein synthesis1. There has also been much interest in the circadian rhythms exhibited by animals, at both the behavioural and biochemical levels (for a review see ref. 2). It therefore seemed of interest to determine whether or not such cyclical responses are reflected in intrinsic rates of protein synthesis. We describe here a diurnal rhythmicity in the incorporation of tritiated lysine into various brain regions and the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号