首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The oxidation-reduction potentials of the two c-type hemes of Pseudomonas aeruginosa cytochrome c peroxidase (ferrocytochrome c:hydrogen-peroxide oxidoreductase EC 1.11.1.5) have been determined and found to be widely different, about +320 and -330 mV, respectively. The EPR spectrum at temperatures below 77 K reveals only low-spin signals (gz 3.24 and 2.93), whereas optical spectra at room temperature indicate the presence of one high-spin and one low-spin heme in the enzyme. Optical absorption spectra of both resting and half-reduced enzyme at 77 K lack features of a high-spin compound. It is concluded that the heme ligand arrangement changes on cooling from 298 to 77 K with a concomitant change in the spin state. The active form of the peroxidase is the half-reduced enzyme, in which one heme is in the ferrous and the other in the ferric state (low-spin below 77 K with gz 2.84). Reaction of the half-reduced enzyme with hydrogen peroxide forms Compound I with the hemes predominantly in the ferric (gz 3.15) and the ferryl states. Compound I has a half-life of several seconds and is converted into Compound II apparently having a ferric-ferric structure, characterized by an EPR peak at g 3.6 with unusual temperature and relaxation behavior. Rapid-freeze experiments showed that Compound II is formed in a one-electron reduction of Compound I. The rates of formation of both compounds are consistent with the notion that they are involved in the catalytic cycle.  相似文献   

2.
The purified cytochrome aa3-type oxidase from Sulfolobus acidocaldarius (DSM 639) consists of a single subunit, containing one low-spin and one high-spin A-type hemes and copper [Anemüller, S. and Sch?fer, G. (1990) Eur. J. Biochem. 191, 297-305]. The enzyme metal centers were investigated by electron paramagnetic resonance spectroscopy (EPR), coupled to redox potentiometry. The low-spin heme EPR signal has the following g-values: gz = 3.02, gy = 2.23 and gx = 1.45 and the high-spin heme exhibits an almost axial spectrum (gy = 6.03 and gx = 5.97, E/D < 0.002). In the enzyme as isolated the low-spin resonance corresponds to 95 +/- 10% of the enzyme concentration, while the high-spin signal accounts for only 40 +/- 5%. However, taking into account the redox potential dependence of the high-spin heme signal, this value also rises to 95 +/- 10%. The high-spin heme signal of the Sulfolobus enzyme shows spectral characteristics distinct from those of the Paracoccus denitrificans one: it shows a smaller rhombicity (gy = 6.1 and gx = 5.9, E/D = 0.004 for the P. denitrificans enzyme) and it is easier to saturate, having a half saturation power of 148 mW compared to 360 mW for the P. denitrificans protein, both at 10 K. The EPR spectrum of an extensively dialyzed and active enzyme sample containing only one copper atom/enzyme molecule does not display CuA-like resonances, indicating that this enzyme contains only a CUB-type center. The EPR-redox titration of the high-spin heme signal, which is assigned to cytochrome a3, gives a bell shaped curve, which was simulated by a non-interactive two step redox process, with reduction potentials of 200 +/- 10 mV and 370 +/- 10 mV at pH = 7.4. The decrease of the signal amplitude at high redox potentials is proposed to be due to oxidation of a CUB(I) center, which in the CUB(II) state is tightly spin-coupled to the heme a3 center. The reduction potential of the low-spin resonance was determined using the same model as 305 +/- 10 mV at pH = 7.4 by EPR redox titration. Addition of azide to the enzyme affects only the high-spin heme signal, consistent with the assignment of this resonance to heme a3. The results are discussed in the context of the redox center composition of quinol and cytochrome c oxidases.  相似文献   

3.
M?ssbauer and EPR spectroscopy were used to characterize the heme prosthetic groups of the nitrite reductase isolated from Desulfovibrio desulfuricans (ATCC 27774), which is a membrane-bound multiheme cytochrome capable of catalyzing the 6-electron reduction of nitrite to ammonia. At pH 7.6, the as-isolated enzyme exhibited a complex EPR spectrum consisting of a low-spin ferric heme signal at g = 2.96, 2.28, and 1.50 plus several broad resonances indicative of spin-spin interactions among the heme groups. EPR redox titration studies revealed yet another low-spin ferric heme signal at g = 3.2 and 2.14 (the third g value was undetected) and the presence of a high-spin ferric heme. M?ssbauer measurements demonstrated further that this enzyme contained six distinct heme groups: one high-spin (S = 5/2) and five low-spin (S = 1/2) ferric hemes. Characteristic hyperfine parameters for all six hemes were obtained through a detailed analysis of the M?ssbauer spectra. D. desulfuricans nitrite reductase can be reduced by chemical reductants, such as dithionite or reduced methyl viologen, or by hydrogenase under hydrogen atmosphere. Addition of nitrite to the fully reduced enzyme reoxidized all five low-spin hemes to their ferric states. The high-spin heme, however, was found to complex NO, suggesting that the high-spin heme could be the substrate binding site and that NO could be an intermediate present in an enzyme-bound form.  相似文献   

4.
Cytochrome c(m552) (cyt c(m552)) from the ammonia-oxidizing Nitrosomonas europaea is encoded by the cycB gene, which is preceded in a gene cluster by three genes encoding proteins involved in the oxidation of hydroxylamine: hao, hydroxylamine oxidoreductase; orf2, a putative membrane protein; cycA, cyt c(554). By amino acid sequence alignment of the core tetraheme domain, cyt c(m552) belongs to the NapC/TorC family of tetra- or pentaheme cytochrome c species involved in electron transport from membrane quinols to a variety of periplasmic electron shuttles leading to terminal reductases. However, cyt c(m552) is thought to reduce quinone with electrons originating from HAO. In this work, the tetrahemic 27 kDa cyt c(m552) from N. europaea was purified after extraction from membranes using Triton X-100 with subsequent exchange into n-dodecyl beta-d-maltoside. The cytochrome had a propensity to form strong SDS-resistant dimers likely mediated by a conserved GXXXG motif present in the putative transmembrane segment. Optical spectra of the ferric protein contained a broad ligand-metal charge transfer band at approximately 625 nm indicative of a high-spin heme. Mossbauer spectroscopy of the reduced (57)Fe-enriched protein revealed the presence of high-spin and low-spin hemes in a 1:3 ratio. Multimode EPR spectroscopy of the native state showed signals from an electronically interacting high-spin/low-spin pair of hemes. Upon partial reduction, a typical high-spin heme EPR signal was observed. No EPR signals were observed from the other two low-spin hemes, indicating an electronic interaction between these hemes as well. UV-vis absorption data indicate that CO (ferrous enzyme) or CN(-) (ferric or ferrous enzyme) bound to more than one and possibly all hemes. Other anionic ligands did not bind. The four ferrous hemes of the cytochrome were rapidly oxidized in the presence of oxygen. Comparative modeling, based on the crystal structure and conserved residues of the homologous NrfH protein from Desulfovibrio of cyt c(m552), predicted some structural elements, including a Met-ligated high-spin heme in a quinone-binding pocket, and likely axial ligands to all four hemes.  相似文献   

5.
MauG is a diheme enzyme possessing a five-coordinate high-spin heme with an axial His ligand and a six-coordinate low-spin heme with His-Tyr axial ligation. A Ca(2+) ion is linked to the two hemes via hydrogen bond networks, and the enzyme activity depends on its presence. Removal of Ca(2+) altered the electron paramagnetic resonance (EPR) signals of each ferric heme such that the intensity of the high-spin heme was decreased and the low-spin heme was significantly broadened. Addition of Ca(2+) back to the sample restored the original EPR signals and enzyme activity. The molecular basis for this Ca(2+)-dependent behavior was studied by magnetic resonance and M?ssbauer spectroscopy. The results show that in the Ca(2+)-depleted MauG the high-spin heme was converted to a low-spin heme and the original low-spin heme exhibited a change in the relative orientations of its two axial ligands. The properties of these two hemes are each different than those of the heme in native MauG and are now similar to each other. The EPR spectrum of Ca(2+)-free MauG appears to describe one set of low-spin ferric heme signals with a large g(max) and g anisotropy and a greatly altered spin relaxation property. Both EPR and M?ssbauer spectroscopic results show that the two hemes are present as unusual highly rhombic low-spin hemes in Ca(2+)-depleted MauG, with a smaller orientation angle between the two axial ligand planes. These findings provide insight into the correlation of enzyme activity with the orientation of axial heme ligands and describe a role for the calcium ion in maintaining this structural orientation that is required for activity.  相似文献   

6.
The complex formation of two electron transfer proteins, cytochrome c3 and ferredoxin I from Desulfovibrio desulfuricans Norway, has been shown by 1H-NMR spectroscopy. Presence of ferredoxin I produces ferricytochrome c3 1H-NMR spectrum modifications. The chemical shift of perturbated heme methyl resonances has been used to determine the stoichiometry of the complex. At pH 7.6 and 20 degrees C, the two proteins were found to form a complex 1:1 with an association constant, KA, of 10(4) M-1. Two of the four hemes are affected by presence of ferredoxin I and may be involved in the electron transfer sites. The heme methyl resonances are average resonances of free and bound cytochrome c3 resonances, indicating a fast exchange process on the NMR time scale.  相似文献   

7.
Proton nuclear magnetic resonance spectra are reported for cytochrome cd1 from Pseudomonas aeruginosa (ATCC 19429) in several forms including complexes of the ferricytochrome with cyanide, azide, and fluoride, a quasi-apo form in which the noncovalently associated heme d1 has been removed but the covalently bound heme c is retained, and the reduced state of both native and the quasi-apo forms. Comparisons are made to the previously reported spectrum of ferricytochrome cd1. The following points are made. The spectra of the azide and fluoride complexes and the ferric quasi-apo form show perturbation of resonances assignable to the site of heme d1, and leave relatively unperturbed resonances assignable to the site of heme c. The heme d1 associated resonances are at 46.0, 35.4, 23.3, 17.5, -2.9, and 16 ppm, and the heme c associated resonances are at 42.0, 33.7, 15.0, 13.9, -7.5, -14, and -33 ppm in native ferricytochrome cd1. The similarity of the hyperfine resonances of the ferric quasi-apo from to the heme c resonances of intact ferricytochrome cd1 is evidence that removal of heme d1 leaves the heme c binding site relatively unaltered. Linewidths and relaxation times suggest that the relaxation times of the unpaired electron spins of the ferric hemes c and d1 are on the same order of magnitude. Although it is paramagnetic, ferrocytochrome cd1 does not demonstrate an experimentally detectable hyperfine shifted spectrum under present conditions. Possible reasons for this are discussed. The presence of a narrow resonance at -2.8 ppm in both ferrocytochrome cd1 and the reduced state of the quasi-apo form suggests that methionine may be a ligand to heme c.  相似文献   

8.
An EPR redox titration was performed on the tetraheme cytochrome c3 isolated from Desulfovibrio baculatus (strain 9974), a sulfate-reducer. Using spectral differences at different poised redox states of the protein, it was possible to individualize the EPR g-values of each of the four hemes and also to determine the mid-point redox potentials of each individual heme: heme 4 (-70 mV) at gmax = 2.93, gmed = 2.26 and gmin = 1.51; heme 3 (-280 mV) at gmax = 3.41; heme 2 (-300 mV) at gmax = 3.05, gmed = 2.24 and gmin = 1.34; and heme 1 (-355 mV) at gmx = 3.18. A previously described multi-redox equilibria model used for the interpretation of NMR data of D. gigas cytochrome c3 [Santos, H., Moura, J.J.G., Moura, I., LeGall, J. & Xavier, A. V. (1984) Eur. J. Biochem. 141, 283-296] is discussed in terms of the EPR results.  相似文献   

9.
In cytochromes c3 which contain four hemes per molecule, the redox properties of each heme may depend upon the redox state of the others. This effect can be described in terms of interaction redox potentials between the hemes and must be taken into account in the characterization of the redox properties of the molecule. We present here a method of measurement of these interactions based on the EPR study of the redox equilibria of the protein. The microscopic and macroscopic midpoint potentials and the interaction potentials are deduced from the analysis of the redox titration curves of the intensity and the amplitude of the EPR spectrum. This analysis includes a precise simulation of the spectrum of the protein in the oxidized state in order to determine the relative contribution of each heme to the spectral amplitude. Using our method on cytochrome c3 from D. desulfuricans Norway, we found evidence for the existence of weak interaction potentials between the hemes. The three interaction potentials which have been measured are characterized by absolute values lower than 20 mV in contrast with the values larger than 40-50 mV which have been reported for cytochrome c3 from D. gigas. Simulations of the spectra of samples poised at different potentials indicate a structural modification of the heme with the most negative potential during the first step of reduction. The correspondence between the redox sites as characterized by the EPR potentiometric titration and the hemes in the tridimensional structure is discussed.  相似文献   

10.
The EPR absorption properties of the hemes of cytochrome oxidase and their liganded derivatives were examined in oriented multilayers from isolated oxidase, mitochondrial membranes and membrane fragments of a bacterium, Paracoccus denitrificans. The hemes of the oxidase in all the systems investigated were oriented normal to the plane of the multilayers. The directions of the g signals corresponding to the gx and gy axes of the g tensor were found to be different in low-spin ferric heme in fully oxidized oxidase and in half-reduced liganded oxidase. It is suggested that this different orientation of gx and gy in fully oxidized oxidase and half-reduced liganded oxidase arises because the respective EPR signals belong to two different hemes, those of cytochrome a and a3.  相似文献   

11.
J A Tan  J A Cowan 《Biochemistry》1990,29(20):4886-4892
A high molecular weight multiheme c-type cytochrome from the sulfate-reducing bacterium Desulfovibrio vulgaris (Hildenborough) has been spectroscopically characterized and compared with the tetraheme cytochrome c3. The protein contains a pentacoordinate high-spin heme (gz 6.0) and two hexacoordinate low-spin hemes (gz 2.95, gy 2.27, gx 1.48). From analysis of the g values for the low-spin hemes by the procedure of Blumberg and Peisach (Palmer, 1983) and comparison with with the optical spectra from a variety of c-type cytochromes, it is likely that these low-spin hemes are bound by two histidine residues. The NO derivative displayed typical rhombic EPR features (gx 2.07, gz 2.02, gy 1.99). Addition of azide does not lead to coupling between heme chromophores, but the ligand is accessible to the high-spin heme. The use of a glassy-carbon electrode to perform direct (no promoter) electrochemistry on the cytochrome is illustrated. Differential pulse polarography of the native protein gave two waves with reduction potentials of -59 (5) and -400 (8) mV (versus NHE). The cyanide adduct gave two waves with reduction potentials of -263 (8) and -401 (8) mV. The cytochrome was found to catalyze the reduction of nitrite and hydroxylamine.  相似文献   

12.
The gene of high molecular weight, multiheme cytochrome c (Hmc) from the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough has been overexpressed in Desulfovibrio desulfuricans G200. The recombinant protein has been purified. Its molecular weight (65,600), amino acid composition, and NH2-terminal sequence were found to be identical to those of the wild-type protein. The recombinant protein has been spectroscopically characterized (optical spectrum, EPR, circular dichroism) and compared to the wild-type protein. We have found 16 hemes per molecule by iron analysis and the pyridine hemochrome test. Both high- and low-spin features were observed in the EPR spectrum. A detailed spin quantitation analysis indicates 1 or 2 high-spin hemes and 14 or 15 low-spin hemes per molecule. The redox potentials of the hemes determined by voltammetric techniques gave an average of three different values, 0, -100, and -250 mV (versus NHE), for the wild-type and the recombinant cytochrome. The low potential values are similar to the values observed for the bis(histidinyl) coordinated hemes of cytochrome c3. A comparison of the arrangement of heme binding sites and coordinated histidines in the amino acid sequences of cytochrome c3 and Hmc has shown that the latter contains four domains, three of which are complete c3-like domains, while the fourth represents an incomplete c3-like domain which may contain His-Met coordinated hemes. These data are in agreement with the detailed study of the number and types of hemes reported in this paper.  相似文献   

13.
From biphasic stopped-flow kinetic studies it has been established that the two heme centres of cytochrome c4 from Azotobacter vinelandii undergo redox change with [Co(terpy)2]3+/2+ (260 mV) at different rates. Rate constants for oxidation and reduction at pH 7.5 give reduction potentials for the two heme centres in agreement with previous values from spectrophotometric titrations (263 and 317 mV). From NMR studies on the fully reduced protein two sharp methyl methionine resonances are observed at -3.16 and -3.60 ppm, consistent with axial methionine coordination. On titration with [Fe(CN)6]3- the -3.16 ppm resonance is the first to disappear, and is assigned to the less positive reduction potential. Line-broadening effects are observed on partial oxidation, which are dominated by intermolecular processes in an intermediate time-range exchange process. The hemes of the oxidised protein are distinguishable by EPR g-values of 3.64 and 3.22. The former is of interest because it is at an unusually low field for histidine/methionine coordination, and has an asymmetric or ramp shape. The latter assigned to the low potential heme is similar to that of a cytochrome c551. The MCD spectra of the fully oxidised protein are typical of low-spin Fe(III) heme centres, with a negative peak at 710 nm characteristic of methionine coordination, and an NIR peak at 1900 nm characteristic of histidine/methionine (axial) coordination. Of the four histidines per molecule only two undergo diethyl pyrocarbonate (DEPC) modification.  相似文献   

14.
The EPR spectrum at 15 K of Pseudomonas cytochrome c peroxidase, which contains two hemes per molecule, is in the totally ferric form characteristic of low-spin heme giving two sets of g-values with gz 3.26 and 2.94. These values indicate an imidazole-nitrogen : heme-iron : methionine-sulfur and an imidazole-nitrogen : heme-iron : imidazole-nitrogen hemochrome structure, respectively. The spectrum is essentially identical at pH 6.0 and 4.6 and shows only a very small amount of high-spin heme iron (g 5--6) also at 77 K. Interaction between the two hemes is shown to exist by experiments in which one heme is reduced. This induces a change of the EPR signal of the other (to gz 2.83, gy 2.35 and gx 1.54), indicative of the removal of a histidine proton from that heme, which is axially coordinated to two histidine residues. If hydrogen peroxide is added to the partially reduced protein, its EPR signal is replaced by still other signals (gz 3.5 and 3.15). Only a very small free radical peak could be observed consistent with earlier mechanistic proposals. Contrary to the EPR spectra recorded at low temperature, the optical absorption spectra of both totally oxidized and partially reduced enzyme reveal the presence of high-spin heme at room temperature. It seems that a transition of one of the heme c moieties from an essentially high-spin to a low-spin form takes place on cooling the enzyme from 298 to 15 K.  相似文献   

15.
Cytochrome bd-type ubiquinol oxidase contains two hemes b (b(558) and b(595)) and one heme d as the redox metal centers. To clarify the structure of the reaction center, we analyzed Escherichia coli cytochrome bd by visible absorption, EPR and FTIR spectroscopies using azide and cyanide as monitoring probes for the exogenous ligand binding site. Azide-binding caused the appearance of a new EPR low-spin signal characteristic of ferric iron-chlorin-azide species and a new visible absorption band at 647 nm. However, the bound azide ((14)N(3)) anti-symmetric stretching infrared band (2, 010.5 cm(-1)) showed anomalies upon (15)N-substitutions, indicating interactions with surrounding protein residues or heme b(595) in close proximity. The spectral changes upon cyanide-binding in the visible region were typical of those observed for ferric iron-chlorin species with diol substituents in macrocycles. However, we found no indication of a low-spin EPR signal corresponding to the ferric iron-chlorin-cyanide complexes. Instead, derivative-shaped signals at g = 3.19 and g = 7.15, which could arise from the heme d(Fe(3+))-CN-heme b(595)(Fe(3+)) moiety, were observed. Further, after the addition of cyanide, a part of ferric heme d showed the rhombic high-spin signal that coexisted with the g(z) = 2.85 signal ascribed to the minor heme b(595)-CN species. This indicates strong steric hindrance of cyanide-binding to ferric heme d with the bound cyanide at ferric heme b(595).  相似文献   

16.
The crystal structure and spectroscopic properties of the periplasmic penta-heme cytochrome c nitrite reductase (NrfA) of Escherichia coli are presented. The structure is the first for a member of the NrfA subgroup that utilize a soluble penta-heme cytochrome, NrfB, as a redox partner. Comparison to the structures of Wolinella succinogenes NrfA and Sulfospirillum deleyianum NrfA, which accept electrons from a membrane-anchored tetra-heme cytochrome (NrfH), reveals notable differences in the protein surface around heme 2, which may be the docking site for the redox partner. The structure shows that four of the NrfA hemes (hemes 2-5) have bis-histidine axial heme-Fe ligation. The catalytic heme-Fe (heme 1) has a lysine distal ligand and an oxygen atom proximal ligand. Analysis of NrfA in solution by magnetic circular dichroism (MCD) suggested that the oxygen ligand arose from water. Electron paramagnetic resonance (EPR) spectra were collected from electrochemically poised NrfA samples. Broad perpendicular mode signals at g similar 10.8 and 3.5, characteristic of weakly spin-coupled S = 5/2, S = 1/2 paramagnets, titrated with E(m) = -107 mV. A possible origin for these are the active site Lys-OH(2) coordinated heme (heme 1) and a nearby bis-His coordinated heme (heme 3). A rhombic heme Fe(III) EPR signal at g(z) = 2.91, g(y) = 2.3, g(x) = 1.5 titrated with E(m) = -37 mV and is likely to arise from bis-His coordinated heme (heme 2) in which the interplanar angle of the imidazole rings is 21.2. The final two bis-His coordinated hemes (hemes 4 and 5) have imidazole interplanar angles of 64.4 and 71.8. Either, or both, of these hemes could give rise to a "Large g max" EPR signal at g(z)() = 3.17 that titrated at potentials between -250 and -400 mV. Previous spectroscopic studies on NrfA from a number of bacterial species are considered in the light of the structure-based spectro-potentiometric analysis presented for the E. coli NrfA.  相似文献   

17.
The nature of the heme centers in the hexa-heme dissimilatory nitrite reductase from the bacterium Wolinella succinogenes has been investigated with EPR and magnetic circular dichroism spectroscopy. The EPR spectrum of the ferric enzyme is complex showing, in addition to magnetically isolated low-spin ferric hemes with g values of 2.93, 2.3 and 1.48, two sets of signals at g = 10.3, 3.7 and 4.8, 3.21, which we assign to two pairs of exchange coupled hemes. The MCD spectra show that the isolated hemes are bis-histidine coordinated and that there is one high-spin ferric heme. The exchange coupling is lost on treatment with SDS.  相似文献   

18.
The tetraheme protein cytochrome c(3) (Cyt-c(3)) from Desulfovibrio gigas, immobilized on a self-assembled monolayer (SAM) of 11-mercaptoundecanoic acid, is studied by theoretical and spectroscopic methods. Molecular dynamics simulations indicate that the protein docks to the negatively charged SAM via its lysine-rich domain around the exposed heme IV. Complex formation is associated with only little protein structural perturbations. This finding is in line with the resonance Raman and surface-enhanced resonance Raman (SERR) spectroscopic results that indicate essentially the same heme pocket structures for the protein in solution and adsorbed on SAM-coated Ag electrodes. Electron- and proton-binding equilibrium calculations reveal substantial negative shifts of the redox potentials compared to the protein in solution. The magnitude of these shifts decreases in the order heme IV (-161 mV) > heme III (-73 mV) > heme II (-57 mV) > heme I (-26 mV), resulting in a change of the order of reduction. These shifts originate from the distance-dependent electrostatic interactions between the SAM headgroups and the individual hemes, leading to a stabilization of the oxidized forms. The results of the potential-dependent SERR spectroscopic analyses are consistent with the theoretical predictions and afford redox potential shifts of -160 mV (heme IV), -90 mV (heme III), -70 mV (heme II), and +20 mV (heme I) relative to the experimental redox potentials for Cyt-c(3) in solution. SERR spectroscopic experiments reveal electric-field-induced changes of the redox potentials also for the structurally very similar Cyt-c(3) from Desulfovibrio vulgaris, although the shifts are somewhat smaller compared to Cyt-c(3) from D. gigas. This study suggests that electric-field-induced redox potential shifts may also occur upon binding to biomembranes or partner proteins and thus may affect biological electron transfer processes.  相似文献   

19.
A c-type monoheme cytochrome c554 (13 kDa) was isolated from cells of Achromobacter cycloclastes IAM 1013 grown anaerobically as a denitrifier. The visible absorption spectrum indicates the presence of a band at 695 nm characteristic of heme-methionine coordination (low-spin form) coexisting with a minor high-spin form as revealed by the contribution at 630 nm. Magnetic susceptibility measurements support the existence of a small contribution of a high-spin form at all pH values, attaining a minimum at intermediate pH values. The mid-point redox potential determined by visible spectroscopy at pH 7.2 is +150 mV. The pH-dependent spin equilibrum and other relevant structural features were studied by 300-MHz 1H-NMR spectroscopy. In the oxidized form, the 1H-NMR spectrum shows pH dependence with pKa values at 5.0 and 8.9. According to these pKa values, three forms designated as I, II and III can be attributed to cytochrome c554. Forms I and II predominate at low pH values, and the 1H-NMR spectra reveal heme methyl proton resonances between 40 ppm and 22 ppm. These forms have a methionyl residue as a sixth ligand, and C6 methyl group of the bound methionine was identified in the low-field region of the NMR spectra. Above pH 9.6, form III predominates and the 1H-NMR spectrum is characterized by down-field hyperfine-shifted heme methyl proton resonances between 29 ppm and 22 ppm. Two new resonances are observed at congruent to 66 ppm and 54 ppm, and are taken as indicative of a new type of heme coordination (probably a lysine residue). These pH-dependent features of the 1H-NMR spectra are discussed in terms of the heme environment structure. The chemical shifts of the methyl resonances at different pH values exhibit anti-Curie temperature dependence. In the ferrous state, the 1H-NMR spectrum shows a methyl proton resonance at -3.9 ppm characteristic of methionine axial ligation. The electron-transfer rate between ferric and ferrous forms has been estimated to be smaller than 2 x 10(4) M-1 s-1 at pH 5. EPR spectroscopy was also used to probe the ferric heme environment. A prominent signal at gmax congruent to 3.58 and the overall lineshape of the spectrum indicate an almost axial heme environment.  相似文献   

20.
M?ssbauer spectroscopy was used to study the tetraheme cytochrome c3 from Desulfovibrio baculatus (DSM 1743). Samples with different degrees of reduction were prepared using a redoxtitration technique. In the reduced cytochrome c3, all four hemes are reduced and exhibit diamagnetic M?ssbauer spectra typical for low-spin ferrous hemes (S = 0). In the oxidized protein, the hemes are low-spin ferric (S = 1/2) and exhibit overlapping magnetic M?ssbauer spectra. A method of differential spectroscopy was applied to deconvolute the four overlapping heme spectra and a crystal-field model was used for data analysis. Characteristic M?ssbauer spectral components for each heme group are obtained. Hyperfine and crystal-field parameters for all four hemes are determined from these deconvoluted spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号