首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aggregation of α-synuclein (α-syn) is believed to play a critical role in the pathogenesis of disorders such as dementia with Lewy bodies and Parkinson's disease. The function of α-syn remains unclear, although several lines of evidence suggest that α-syn is involved in synaptic vesicle trafficking probably via lipid binding. Moreover, interactions with cholesterol and lipids have been shown to be involved in α-syn aggregation. In this context, the main objective of this study was to determine if statins – cholesterol synthesis inhibitors – might interfere with α-syn accumulation in cellular models. For this purpose, we studied the effects of lovastatin, simvastatin, and pravastatin on the accumulation of α-syn in a stably transfected neuronal cell line and in primary human neurons. Statins reduced the levels of α-syn accumulation in the detergent insoluble fraction of the transfected cells. This was accompanied by a redistribution of α-syn in caveolar fractions, a reduction in oxidized α-syn, and enhanced neurite outgrowth. In contrast, supplementation of the media with cholesterol increased α-syn aggregation in detergent insoluble fractions of transfected cells and was accompanied by reduced neurite outgrowth. Taken together, these results suggest that regulation of cholesterol levels with cholesterol inhibitors might be a novel approach for the treatment of Parkinson's disease.  相似文献   

2.
Parkinson's disease (PD) is a neurodegenerative disorder that is pathologically characterized by the presence of intracytoplasmic Lewy bodies, the major component of which are filaments consisting of alpha-synuclein. Two recently identified point mutations in alpha-synuclein are the only known genetic causes of PD, but their pathogenic mechanism is not understood. Here we show that both wild type and mutant alpha-synuclein form insoluble fibrillar aggregates with antiparallel beta-sheet structure upon incubation at physiological temperature in vitro. Importantly, aggregate formation is accelerated by both PD-linked mutations. Under the experimental conditions, the lag time for the formation of precipitable aggregates is about 280 h for the wild type protein, 180 h for the A30P mutant, and only 100 h for the A53T mutant protein. These data suggest that the formation of alpha-synuclein aggregates could be a critical step in PD pathogenesis, which is accelerated by the PD-linked mutations.  相似文献   

3.
alpha-Synuclein is a major component of the fibrillary lesion known as Lewy bodies and Lewy neurites that are the pathologic hallmarks of Parkinson's disease (PD). In addition, point mutations in the alpha-synuclein gene imply alpha-synuclein dysfunction in the pathology of inherited forms of PD. alpha-Synuclein is a member of a family of proteins found primarily in the brain and is concentrated within presynaptic terminals. Here, we address the localization and membrane binding characteristics of wild type and PD mutants of alpha-synuclein in cultured cells. In cells treated with high concentrations of fatty acids, wild type alpha-synuclein accumulated on phospholipid monolayers surrounding triglyceride-rich lipid droplets and was able to protect stored triglycerides from hydrolysis. PD mutant synucleins showed variable distributions on lipid droplets and were less effective in regulating triglyceride turnover. Chemical cross-linking demonstrated that synuclein formed small oligomers within cells, primarily dimers and trimers, that preferentially associated with lipid droplets and cell membranes. Our results suggest that the initial phases of synuclein aggregation may occur on the surfaces of membranes and that pathological conditions that induce cross-linking of synuclein may enhance the propensity for subsequent synuclein aggregation.  相似文献   

4.
5.
New animal models for Parkinson's disease   总被引:2,自引:0,他引:2  
Dawson TM 《Cell》2000,101(2):115-118
  相似文献   

6.
7.
8.
Engelender S 《Autophagy》2008,4(3):372-374
alpha-Synuclein is mutated in Parkinson's disease (PD) and is found in cytosolic inclusions, called Lewy bodies, in sporadic forms of the disease. A fraction of alpha-synuclein purified from Lewy bodies is monoubiquitinated, but the role of this monoubiquitination has been obscure. We now review recent data indicating a role of alpha-synuclein monoubiquitination in Lewy body formation and implicating the autophagic pathway in regulating these processes. The E3 ubiquitin-ligase SIAH is present in Lewy bodies and monoubiquitinates alpha-synuclein at the same lysines that are monoubiquitinated in Lewy bodies. Monoubiquitination by SIAH promotes the aggregation of alpha-synuclein into amorphous aggregates and increases the formation of inclusions within dopaminergic cells. Such effect is observed even at low monoubiquitination levels, suggesting that monoubiquitinated alpha-synuclein may work as a seed for aggregation. Accumulation of monoubiquitinated alpha-synuclein and formation of cytosolic inclusions is promoted by autophagy inhibition and to a lesser extent by proteasomal and lysosomal inhibition. Monoubiquitinated alpha-synuclein inclusions are toxic to cells and recruit PD-related proteins, such as synphilin-1 and UCH-L1. Altogether, the new data indicate that monoubiquitination might play an important role in Lewy body formation. Decreasing alpha- synuclein monoubiquitination, by preventing SIAH function or by stimulating autophagy, constitutes a new therapeutic strategy for Parkinson's disease.  相似文献   

9.
10.
Autoantibodies to alpha-synuclein in inherited Parkinson's disease   总被引:2,自引:0,他引:2  
Neurodegeneration in Parkinson's disease (PD) is accompanied by a local immune reaction in the affected brain regions. It is well established that alpha-synuclein is directly implicated in the pathogenesis of PD. Development of the disease is often associated with changes of expression and cellular compartmentalisation of this protein; moreover, its oligomers or protofibrils are often released to the CSF and plasma of patients. Aggregated alpha-synuclein can trigger the activation of microglia; however, its capacity to induce production of specific autoantibodies (AAb) has not been assessed. In this study, we examined the presence of AAb against synuclein family members in the peripheral blood serum of PD patients and control individuals. Presence of AAb against beta-synuclein or gamma-synuclein showed no association with PD. Multi-epitopic AAb against alpha-synuclein were detected in 65% of all patients tested and their presence strongly correlated with an inherited mode of the disease but not with other disease-related factors. The frequency of the presence of AAb in the studied group of patients with sporadic form of PD was not significantly different from the frequency in the control group but very high proportion (90%) of patients with familial form of the disease were positive for AAb against alpha-synuclein. We hypothesise that these AAb could be involved in pathogenesis of the inherited form of PD.  相似文献   

11.
The aggregation of normally soluble alpha-synuclein in the dopaminergic neurons of the substantia nigra is a crucial step in the pathogenesis of Parkinson's disease. Oxidative stress is believed to be a contributing factor in this disorder. Because it lacks Trp and Cys residues, mild oxidation of alpha-synuclein in vitro with hydrogen peroxide selectively converts all four methionine residues to the corresponding sulfoxides. Both oxidized and non-oxidized alpha-synucleins have similar unfolded conformations; however, the fibrillation of alpha-synuclein at physiological pH is completely inhibited by methionine oxidation. The inhibition results from stabilization of soluble oligomers of Met-oxidized alpha-synuclein. Furthermore, the Met-oxidized protein also inhibits fibrillation of unmodified alpha-synuclein. The degree of inhibition of fibrillation by Met-oxidized alpha-synuclein is proportional to the number of oxidized methionines. However, the presence of metals can completely overcome the inhibition of fibrillation of the Met-oxidized alpha-synuclein. Since oligomers of aggregated alpha-synuclein may be cytotoxic, these findings indicate that both oxidative stress and environmental metal pollution could play an important role in the aggregation of alpha-synuclein, and hence possibly Parkinson's disease. In addition, if the level of Met-oxidized alpha-synuclein was under the control of methionine sulfoxide reductase (Msr), then this could also be factor in the disease.  相似文献   

12.
Summary The aim of the study was to examine the effect of antagonists of the NMDA receptor on the parkinsonian-like muscle rigidity in rats. Reserpine and haloperidol increased the muscle resistance of the hind foot to passive movements, as well as the reflex electromyographic (EMG) activity in the gastrocnemius and tibialis anterior muscles. MK-801 (0.32-1.28 mg/kg sc), an uncompetitive antagonist of the NMDA receptor, and L-701,324 (5-40 mg/ kg ip), an antagonist of the glycine site, reduced the muscle tone and the reflex EMG activity enhanced by reserpine or haloperidol. AP-5 (2 and 5 ,g/ 0.5 pl), a competitive antagonist of the NMDA receptor, and 5,7-dichlorokynurenic acid (1.0-4.5g/0.5 pl), the glycine site antagonist injected bilaterally into the rostral striatum, inhibited the muscle rigidity induced by haloperidol. In contrast, AP-5, injected alone bilaterally into the intermediate-caudal striatum induced muscle rigidity. The present results suggest that: (1) the inhibitory effect of the NMDA receptor antagonists on the parkinsonian-like muscle rigidity depends, at least partly, on their action on the rostral striatum; (2) the blockade of NMDA receptors in the intermediate-caudal striatum may reduce the beneficial impact of these compounds.  相似文献   

13.
Parkinson disease and other alpha-synucleinopathies are characterized by the deposition of intraneuronal alpha-synuclein (alphaSyn) inclusions. A significant fraction (about 15%) of alphaSyn in these pathological structures are truncated forms that have a much higher propensity than the full-length alphaSyn to form aggregates in vitro. However, little is known about the role of truncated alphaSyn species in pathogenesis or the means by which they are generated. Here, we have provided an in vitro mechanistic study demonstrating that truncated alphaSyns induce rapid aggregation of full-length protein at substoichiometric ratios. Co-overexpression of truncated alphaSyn with full-length protein increases cell vulnerability to oxidative stress in dopaminergic SH-SY5Y cells. These results suggest a precipitating role for truncated alphaSyn in the pathogenesis of diseases involving alphaSyn aggregation. In this regard, the A53T mutation found in some cases of familial Parkinson disease exacerbates the accumulation of insoluble alphaSyns that correlates with the onset of pathology in transgenic mice expressing human alphaSyn-A53T mutant. The caspase-like activity of the 20 S proteasome produces truncated fragments similar to those found in patients and animal models from degradation of unstructured alphaSyn. We propose a model in which incomplete degradation of alphaSyn, especially under overloaded proteasome capacity, produces highly amyloidogenic fragments that rapidly induce the aggregation of full-length protein. These aggregates in turn reduce proteasome activity, leading to further accumulation of fragmented and full-length alphaSyns, creating a vicious cycle of cytotoxicity. This model has parallels in other neurodegenerative diseases, such as Huntington disease, where coaggregation of poly(Q) fragments with full-length protein has been observed.  相似文献   

14.
alpha-synuclein gene mutations are major underlying genetic defects known in familial juvenile onset Parkinson's disease (PD), and alpha-synuclein is a major constituent of Lewy Bodies, the pathological hallmark of PD. The normal cellular function of alpha-synuclein has been elusive, and its exact etiological mechanism in causing dopaminergic neuronal death in PD is also not clearly understood. Very recent reports now indicate that mutant or simply over-expressed alpha- synuclein could cause damage by interfering with particular steps of neuronal membrane traffic. alpha-synuclein selectively blocks endoplamic reticulum-to-Golgi transport, thus causing ER stress. A screen in a yeast revealed that alpha- synuclein toxicity could be suppressed by over-expression of the small GTPase Ypt1/Rab1, and that over-expression of the latter rescues neuron loss in invertebrate and mammalian models of alpha-synuclein-induced neurodegeneration. alpha-synuclein may also serve a chaperone function for the proper folding of synaptic SNAREs that are important for neurotransmitter release. We discuss these recent results and the emerging pathophysiological interaction of alpha-synuclein with components of neuronal membrane traffic.  相似文献   

15.
The deposition of alpha-synuclein and other cellular proteins in Lewy bodies in midbrain dopamine neurons is a pathological hallmark of Parkinson's disease. Nitrative and oxidative stress can induce alpha-synuclein protein aggregation, possibly initiated by the formation of stable cross-linking dimers. To determine whether enhanced dimer formation can accelerate protein aggregation and increase cellular toxicity, we have substituted cysteine for tyrosine at positions 39, 125, 133, and 136 in human wild-type (WT) alpha-synuclein, and in A53T and A30P mutant alpha-synuclein. To reduce the likelihood of cross-linking, phenylalanine was substituted for tyrosine at the same sites. We have found that overexpression of Y39C or Y125C mutant proteins leads to increased intracellular inclusions and apoptosis in a rat dopaminergic cell line (N27 cells) and in human embryonic kidney 293 cells. Expression of Y133C, Y136C, and all four Tyr-to-Phe mutations were not more cytotoxic than WT control. Exposure to oxidative stress increased Y39C and Y125C alpha-synuclein aggregation and toxicity. Dimers and oligomers were found in Triton X-100-soluble fractions from adenovirus-mediated overexpression of Y39C and Y125C in N27 cells. In contrast, WT beta-synuclein and all four Tyr-to-Cys mutant beta-synucleins did not cause protein aggregation and cell death. We conclude that cysteine substitution at critical positions in the alpha-synuclein molecule can increase dimer formation and accelerate protein aggregation and cellular toxicity of alpha-synuclein.  相似文献   

16.
Parkinson's disease is the most common neurodegenerative movement disorder. Although it is mostly a sporadic disorder, 15-30% of all cases are linked to a genetic background. On this ground, several cellular and animal models have been developed to investigate disease etiology and pathogenetic mechanisms. Nevertheless, several clinical issues cannot be investigated using models, thus making post-mortem studies necessary to complete the picture.  相似文献   

17.
Parkinson's disease (PD) is an age-related neurodegenerative disease with unknown etiology. Growing evidence from genetic, pathologic, animal modeling, and biochemical studies strongly support the theory that abnormal aggregation of alpha-synuclein plays a critical role in the pathogenesis of PD. Protein aggregation is an alternative folding process that competes with the native folding pathway. Whether or not a protein is subject to the aggregation process is determined by the concentration of the protein as well as thermodynamic properties inherent to each polypeptide. An increase in cellular concentration of alpha-synuclein has been associated with the disease in both familial and sporadic forms of PD. Thus, maintenance of the intraneuronal steady state levels of alpha-synuclein below the critical concentration is a key challenge neuronal cells are facing. Expression of the alpha-synuclein gene is under the control of environmental factors and aging, the two best-established risk factors for PD. Studies also suggest that the degradation of this protein is mediated by proteasomal and autophagic pathways, which are two mechanisms that are related to the pathogenesis of PD. Recently, vesicle-mediated exocytosis has been suggested as a novel mechanism for disposal of neuronal alpha-synuclein. Relocalization of the protein to specific compartments may be another method for increasing its local concentration. Regulation of the neuronal steady state levels of alpha-synuclein has significant implications in the development of PD, and understanding the mechanism may disclose potential therapeutic targets for PD and other related diseases.  相似文献   

18.
alpha-Synuclein has been implicated in the pathogenesis of Parkinson's disease, since rare autosomal dominant mutations are associated with early onset of the disease and alpha-synuclein was found to be a major constituent of Lewy bodies. We have analyzed alpha-synuclein expression in transfected cell lines. In pulse-chase experiments alpha-synuclein appeared to be stable over long periods (t((1)/(2)) 54 h) and no endoproteolytic processing was observed. alpha-Synuclein was constitutively phosphorylated in human kidney 293 cells as well as in rat pheochromocytoma PC12 cells. In both cell lines phosphorylation was highly sensitive to phosphatases, since okadaic acid markedly stabilized phosphate incorporation. Phosphoamino acid analysis revealed that phosphorylation occurred predominantly on serine. Using site-directed mutagenesis we have identified a major phosphorylation site at serine 129 within the C-terminal domain of alpha-synuclein. An additional site, which was phosphorylated less efficiently, was mapped to serine 87. The major phosphorylation site was located within a consensus recognition sequence of casein kinase 1 (CK-1). In vitro experiments and two-dimensional phosphopeptide mapping provided further evidence that serine 129 was phosphorylated by CK-1 and CK-2. Moreover, phosphorylation of serine 129 was reduced in vivo upon inhibition of CK-1 or CK-2. These data demonstrate that alpha-synuclein is constitutively phosphorylated within its C terminus and may indicate that the function of alpha-synuclein is regulated by phosphorylation/dephosphorylation.  相似文献   

19.
We previously observed marked down-regulation of the mRNA for angiogenin, a potent inducer of neovascularization, in a mouse model of Parkinson's disease (PD) based on over-expression of alpha-synuclein. Angiogenin has also been recently implicated in the pathogenesis of amyotrophic lateral sclerosis. In this study, we confirmed that mouse angiogenin-1 protein is dramatically reduced in this transgenic alpha-synuclein mouse model of PD, and examined the effect of angiogenin in cellular models of PD. We found that endogenous angiogenin is present in two dopamine-producing neuroblastoma cell lines, SH-SY5Y and M17, and that exogenous angiogenin is taken up by these cells and leads to phosphorylation of Akt. Applied angiogenin protects against the cell death induced by the neurotoxins 1-methyl-4-phenylpyridinium and rotenone and reduces the activation of caspase 3. Together our data supports the importance of angiogenin in protecting against dopaminergic neuronal cell death and suggests its potential as a therapy for PD.  相似文献   

20.
Parkinson's disease (PD), the second most common age-related neurodegenerative disease, results in abnormalities in motor functioning. Many fundamental questions regarding its aetiology remain unanswered. Pathologically, it is not until 70-80% of the dopaminergic neurons from the substantia nigra pars compacta are lost before clinical symptoms are observed. Thus research into PD is complicated by this apparent paradox in that what appears to be the beginning of the disease at the clinical level is really the end point neurochemically. Consequently, we can only second guess when the disease started and what initiated it. The causation is probably complex, with contributions from both genetic and environmental factors. Intracellular proteinaceous inclusions, Lewy bodies and Lewy neurites, found in surviving dopaminergic neurons, are the key pathological characteristic of PD. Their presence points to an inability within these terminally differentiated cells to deal with aggregating proteins. Recent advances in our knowledge of the underlying disease process have come about from studies on models based on genes associated with rare hereditary forms of PD, and mitochondrial toxins that mimic the behavioural effects of PD. The reason that dopaminergic neurons are particularly sensitive may be due to the additional cellular stress caused by the breakdown of the inherently chemically unstable neurotransmitter, dopamine. In the present review, I discuss the proposal that in sporadic disease, interlinked problems of protein processing and inappropriate mitochondrial activity seed the foundation for age-related increased levels of protein damage, and a reduced ability to deal with the damage, leading to inclusion formation and, ultimately, cell toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号