首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
High-energy electrons are able to transfer momentum to nuclei, which results in displacement on to the interstitial lattice sites with a maximum transferred energy of 4 · 104 eV for carbon at 100 keV. Moreover, most of the energy dissipated in energy losses is converted into heat, which results in melting and evaporation.The specimen temperature rise was calculated by the heat conduction theory and confirmed by the specimen drift due to the thermal damage. The damage can be reduced by a small area of illumination, the use of a metal-coated microgrid and small area scanning.A further displacement due to the knock-on collision and the resulting etching rate of biological specimens was measured. The damage is proportional to the current density in c cm-2 at the specimen. The allowable maximum dose was obtained from the measurement of an etching rate with the weight loss and dry density of the specimens.It was found that the images affected by the electron irradiation, in which -H, C-H, C-N bonds break molecules in proteinaceous biological specimens are removed, and the remaining molecules are changed to stable carbon-rich molecules by deposition, polymerization and contamination. In addition, defect images were observed in high contrast, when compared with unaffected images taken with a small area scanning method.  相似文献   

2.
Here we characterize virus-like particles (VLPs) by three very distinct, orthogonal, and quantitative techniques: electrospray differential mobility analysis (ES-DMA), asymmetric flow field-flow fractionation with multi-angle light scattering detection (AFFFF-MALS) and transmission electron microscopy (TEM). VLPs are biomolecular particles assembled from viral proteins with applications ranging from synthetic vaccines to vectors for delivery of gene and drug therapies. VLPs may have polydispersed, multimodal size distributions, where the size distribution can be altered by subtle changes in the production process. These three techniques detect subtle size differences in VLPs derived from the non-enveloped murine polyomavirus (MPV) following: (i) functionalization of the surface of VLPs with an influenza viral peptide fragment; (ii) packaging of foreign protein internally within the VLPs; and (iii) packaging of genomic DNA internally within the VLPs. These results demonstrate that ES-DMA and AFFFF-MALS are able to quantitatively determine VLP size distributions with greater rapidity and statistical significance than TEM, providing useful technologies for product development and process analytics.  相似文献   

3.
Under conventional electron microscopy negatively stained phosphorylase kinase exhibits a bilobal structure resembling two bridged opposing parentheses. In this predominant particle orientation, usually only one bridge is observed; however, in many particles two bridges can be seen. Scanning transmission electron microscopy of unstained phosphorylase kinase shows very similar structures, with a particle mass equivalent to that of the hexadecameric holoenzyme. Partial digestion of the enzyme with chymotrypsin, which preferentially hydrolyzes the alpha-subunits, causes no significant changes in the structure; however, when both the alpha and beta subunits are degraded by trypsin, single lobed particles appear, i.e. the connecting bridges are missing. Mass analysis of scanning transmission electron microscopy images of trypsinized enzyme indicates that the protease does, in fact, split the particle into halves. Transmission electron microscopy of an alpha gamma delta complex isolated after incubation of the holoenzyme with LiBr shows only small particles approximately one-fourth the size of the holoenzyme. Thus, integrity of the beta subunit may be necessary in order for the two lobes of phosphorylase kinase to be bridged. These data also indicate that the subunits are arranged as a bridged dimer of octamers 2 (alpha 2 beta 2 gamma 2 delta 2).  相似文献   

4.
5.
6.
Functional studies have shown that the sphingolipid ceramide, self-assembles in phospholipid membranes to form large channels capable of allowing proteins to cross the membrane. Here these channels are visualized by negative stain transmission electron microscopy. The images contain features consistent with stain-filled pores having a roughly circular profile. There is no indication of tilt, and the results are consistent with the formation of right cylinders. The sizes of the pores range from 5 to 40nm in diameter with an asymmetric distribution indicating no apparent upper size limit. The size distribution matches well with the distribution of sizes calculated from electrophysiological measurements.  相似文献   

7.
Nanometric biological particles such as viruses have received increased attention in a wide range of scientific fields. Evaluation of viral contributions to environmental processes and the use of viruses in medical applications such as gene therapy require viruses to be routinely and accurately enumerated. There are a variety of existing techniques for counting viruses, namely, plaque assays, transmission electron microscopy (TEM), epifluorescence microscopy (EFM), and flow cytometry (FCM); each has advantages and disadvantages. While there have been attempts to intercompare some of these techniques to determine the most effective means to count viruses, no previous study used a technique-independent standard for quantitative comparison of collection efficiency, accuracy, and precision. In this work, polystyrene nanospheres were used as standards for the intercomparison of performance characteristics for TEM, EFM, FCM, as well as a custom-built flow cytometer (the Single Nanometric Particle Enumerator, SNaPE). EFM and SNaPE exhibited the highest degree of accuracy and precision, with particle concentrations deviating < or =5% from true and relative errors less than half that of TEM, EFM and SNaPE are also significantly more time and cost efficient than TEM.  相似文献   

8.
The understanding of the functional role of aquatic bacteria in microbial food webs is largely dependent on methods applied to the direct visualization and enumeration of these organisms. While the ultrastructure of aquatic bacteria is still poorly known, routine observation of aquatic bacteria by light microscopy requires staining with fluorochromes, followed by filtration and direct counting on filter surfaces. Here, we used a new strategy to visualize and enumerate aquatic bacteria by light microscopy. By spinning water samples from varied tropical ecosystems in a cytocentrifuge, we found that bacteria firmly adhere to regular slides, can be stained by fluorochoromes with no background formation and fast enumerated. Significant correlations were found between the cytocentrifugation and filter-based methods. Moreover, preparations through cytocentrifugation were more adequate for bacterial viability evaluation than filter-based preparations. Transmission electron microscopic analyses revealed a morphological diversity of bacteria with different internal and external structures, such as large variation in the cell envelope and capsule thickness, and presence or not of thylakoid membranes. Our results demonstrate that aquatic bacteria represent an ultrastructurally diverse population and open avenues for easy handling/quantification and better visualization of bacteria by light microscopy without the need of filter membranes.  相似文献   

9.
Correlative microscopy is a powerful technique that combines the strengths of fluorescence microscopy and electron microscopy. The first enables rapid searching for regions of interest in large fields of view while the latter exhibits superior resolution over a narrow field of view. Routine use of correlative microscopy is seriously hampered by the cumbersome and elaborate experimental procedures. This is partly due to the use of two separate microscopes for fluorescence and electron microscopy. Here, an integrated approach to correlative microscopy is presented based on a laser scanning fluorescence microscope integrated in a transmission electron microscope. Using this approach the search for features in the specimen is greatly simplified and the time to carry out the experiment is strongly reduced. The potential of the integrated approach is demonstrated at room temperature on specimens of rat intestine cells labeled with AlexaFluor488 conjugated to wheat germ agglutinin and on rat liver peroxisomes immunolabeled with anti-catalase antibodies and secondary AlexaFluor488 antibodies and 10nm protein A-gold.  相似文献   

10.
The application of transmission electron microscopy (TEM) and atomic-force microscopy (AFM) aid the acquisition of detailed structural information on the process of hard tissue formation. The sutural mineralization of rat calvaria is taken as a model for a collagen-related mineralization system. After cryofixation or chemical fixation an anhydrous tissue preparation technique with no staining procedures is used. The atomic-force microscope and the transmission electron microscope are used for structural analysis of the mineralizing region of the sutural tissue. With the application of AFM the collagen macroperiod is shown to be well represented in the unmineralized sutural tissue. At the mineralization front the collagen fibrils are found to be thickened and to change to a characteristic stacked platelet structure. Using TEM the macroperiod is faintly visible before mineral crystallites have formed and is more prominent after the apatite crystallization has started in the fibrils. In this step a needle-like structure of the newly formed apatitic crystals is visible.  相似文献   

11.
Microflora of soil as viewed by transmission electron microscopy   总被引:28,自引:14,他引:14       下载免费PDF全文
Several procedures were evaluated for separating and concentrating indigenous microorganisms from soil without the occurrence of growth. Electron microscopy of nontangential, thin sections through these cells revealed that all of the cells examined were less than 0.9 μm in diameter, and up to 72% were „dwarf” cells less than 0.3 μm in diameter. Some were small enough that they should not be resolved with the light microscope. Approximately 27% had a fine structure bearing some resemblance to that of a bacterial cyst or microcyst, but this value may be low because cells having their outer layers partially stripped off were not included in the count. Approximately 25% showed a distinct periplasmic space, which often contained stainable material. Other fine structure features are presented together with frequencies of occurrence for the populations examined.  相似文献   

12.
The higher-order assembly of the approximately 30 nm chromatin fibers into the characteristic morphology of HeLa mitotic chromosomes was investigated by electron microscopy. Transmission electron microscopy (TEM) of serial sections was applied to view the distribution of the DNA-histone-nonhistone fibers through the chromatid arms. Scanning electron microscopy (SEM) provided a complementary technique allowing the surface arrangement of the fibers to be observed. The approach with both procedures was to swell the chromosomes slightly, without extracting proteins, so that the densely-packed chromatin fibers were separated. The degree of expansion of the chromosomes was controlled by adjusting the concentration of divalent cations (Mg2+). With TEM, individual fibers could be resolved by decreasing the Mg2+ concentration to 1.0-1.5 mM. The predominant mode of fiber organization was seen to be radial for both longitudinal and transverse sections. Using SEM, surface protuberances with an average diameter of 69 nm became visible after the Mg2+ concentration was reduced to 1.5 mM. The knobby surface appearance was a variable feature, because the average diameter decreased when the divalent cation concentration was further reduced. The surface projections appear to represent the peripheral tips of radial chromatin loops. These TEM and SEM observations support a "radial loop" model for the organization of the chromatin fibers in metaphase chromosomes.  相似文献   

13.
During a transmission electron microscopic study of the JB-1 ascites tumour the rare phenomenon of tumour cell-tumour cell emperipolesis was observed. The ‘inner’ cell appeared in a vacuole of the ‘outer’ tumour cell.  相似文献   

14.
15.
A transmission electron microscope (TEM) study was initiated on samples of geological ages ranging from Devonian to Jurassic to analyse the ultrastructure of the organic matrix in fossil bones that have preserved a histological structure after demineralisation. All samples show a network of variably well-preserved fibrils. Within the sampling, the best results were obtained in two specimens: the scales of the Devonian sarcopterygian tetrapodomorph Eustenopteron foordi, and the humerus of Jurassic dinosaur Lappentosaurus madagascariensis. Despite an extended time difference between both specimens, their fossil bone is composed of a plywood-like structure in which the fibrils are very closely packed. These observations support the hypothesis that dense initial packing of collagen fibrils favours the preservation of the fossil bone.  相似文献   

16.
The immunogold method is widely used to localize, identify, and distinguish cellular antigens. There are, however, some pitfalls that can lead to nonspecific binding, particularly in cytoskeletal studies with gold probes prepared from small gold particles. We present a list of suggestions for minimizing nonspecific binding, with particular attention to two problems identified in this study. First, we find that the method used to prepare the colloidal gold particles affects the degree of nonspecific binding. Second, the standard BSA-stabilized small gold probes evidently possess exposed regions that bind to the proteins of cytoskeletal preparations. This was investigated in whole-mount cytoskeletal preparations of cultured cells by use of light microscopy, transmission electron microscopy, and photoelectron microscopy of silver-enhanced specimens. Gold probes were made from approximately 5-nm particles generated by reduction of HAuCl4 with three different reducing agents: white phosphorus, sodium borohydride, and citrate-tannic acid. All three preparations stabilized in the conventional way showed significant levels of nonspecific binding, which was highest with citrate-tannic acid. This problem was largely solved with all three types of probes by including fish gelatin in the probe buffer, by substituting fish gelatin for the BSA stabilizer used to prepare the probes, or by pre-adsorption methods. Application of these techniques resulted in clear immunogold labeling patterns with minimal nonspecific background.  相似文献   

17.
This protocol details methods for the isolation of oocyte nuclear envelopes (NEs) from the African clawed toad Xenopus laevis, immunogold labeling of component proteins and subsequent visualization by field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). This procedure involves the initial removal of the ovaries from mature female X. laevis, the dissection of individual oocytes, then the manual isolation of the giant nucleus and subsequent preparation for high-resolution visualization. Unlike light microscopy, and its derivative technologies, electron microscopy enables 3-5 nm resolution of nuclear structures, thereby giving unrivalled opportunities for investigation and immunological characterization in situ of nuclear structures and their structural associations. There are a number of stages where samples can be stored, although we recommend that this protocol take no longer than 2 d. Samples processed for FESEM can be stored for weeks under vacuum, allowing considerable time for image acquisition.  相似文献   

18.
The design of the scanning transmission electron microscope (STEM) has been conceived to optimize its detection efficiency of the different elastic and inelastic signals resulting from the interaction of the high energy primary electrons with the specimen. Its potential use to visualize and measure biological objects was recognized from the first studies by Crewe and coworkers in the seventies. Later the real applications have not followed the initial hopes. The purpose of the present paper is to describe how the instrument has practically evolved and recently begun to demonstrate all its potentialities for quantitative electron microscopy of a wide range of biological specimens, from freeze-dried isolated macromolecules to unstained cryosections. Emphasis will be put on the mass-mapping, multi-signal and elemental mapping modes which are unique features of the STEM instruments.  相似文献   

19.
20.
Summary Crab photoreceptors were examined after treatment by the osmium-DMSO-osmium method for high-resolution scanning electron microscopy. This technique of specimen preparation was also adapted for transmission electron microscopy, enabling sections up to 1 urn thick to be viewed in a conventional microscope at 75 kV. With appropriate pretreatment, some cytoskeletal elements can be visualised by both techniques. The methods were then used to investigate some of the daily changes known to occur in photoreceptor cell structure. Striking differences were found in the structure of Golgi bodies present in retinula cells during the synthesis and breakdown phases of the daily cycle of photoreceptor membrane turnover. Cyclic changes were also noticed in the mitochondria of retinula cells, and additional evidence was found for a previously proposed model of rhabdomeral microvillus formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号