首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Epigenetic regulation by histone methylation and histone variants   总被引:10,自引:0,他引:10  
Epigenetics is the study of heritable changes in gene expression that are not mediated at the DNA sequence level. Molecular mechanisms that mediate epigenetic regulation include DNA methylation and chromatin/histone modifications. With the identification of key histone-modifying enzymes, the biological functions of many histone posttranslational modifications are now beginning to be elucidated. Histone methylation, in particular, plays critical roles in many epigenetic phenomena. In this review, we provide an overview of recent findings that shape the current paradigms regarding the roles of histone methylation and histone variants in heterochromatin assembly and the maintenance of the boundaries between heterochromatin and euchromatin. We also highlight some of the enzymes that mediate histone methylation and discuss the stability and inheritance of this modification.  相似文献   

3.
4.
5.
Chen J  Zhang XQ  Fu JL 《生理科学进展》2001,32(4):362-364
组蛋白乙酰化和脱乙酰化与DNA甲基化有密切的关系,本文介绍了DNA甲基化对组蛋白乙酰化/脱乙酰化影响,组蛋白乙酰化/脱乙酰化对DNA甲基化的影响,以及组蛋白乙酰化/脱乙酰化和DNA甲基化协同效应。  相似文献   

6.
7.
8.
Dynamic regulation of histone lysine methylation by demethylases   总被引:2,自引:0,他引:2  
  相似文献   

9.
10.
The histones of Plasmodium falciparum represent a potential new target for anti-malarial compounds. A naturally occurring compound, apicidin, has recently been shown to inhibit the in vitro growth of P. falciparum. Apicidin was shown to hyperacetylate histones, suggesting that its mode of action is through histone deacetylase inhibition. We have tested the ability of known histone deacetylase inhibitors, mammalian tumour suppressor compounds, and cytodifferentiating agents to inhibit the in vitro growth of a drug sensitive and resistant strain of P. falciparum. Seven of the tested compounds had microM IC50 values, and trichostatin A, a histone deacetylation inhibitor and cytodifferentiating agent, was active at low nM concentrations. One compound, suberic acid bisdimethylamide, which selectively arrests tumour cells as opposed to normal mammalian cells, had an in vivo cytostatic effect against the acute murine malaria Plasmodium berghei, and one round of treatment with the compound failed to select for resistant mutations. These results suggest a promising role for histone deacetylase inhibitors and cytodifferentiating agents as antimalarial drug candidates.  相似文献   

11.
12.
In this study, we investigated the causal relationship between chronic cold exposure and insulin resistance and the mechanisms of how DNA methylation and histone deacetylation regulate cold-reduced insulin resistance. 46 adult male mice from postnatal day 90–180 were randomly assigned to control group and cold-exposure group. Mice in cold-exposure group were placed at temperature from -1 to 4 °C for 30 days to mimic chronic cold environment. Then, fasting blood glucose, blood insulin level and insulin resistance index were measured with enzymatic methods. Immunofluorescent labeling was carried out to visualize the insulin receptor substrate 2 (IRS2), Obese receptor (Ob-R, a leptin receptor), voltage-dependent anion channel protein 1 (VDAC1), cytochrome C (cytC), 5-methylcytosine (5-mC) positive cells in hippocampal CA1 area. Furthermore, the expressions of some proteins mentioned above were detected with Western blot. The results showed: ① Chronic cold exposure could reduce the insulin resistance index (P < 0.01) and increase the number of IRS2 positive cells and Ob-R positive cells in hippocampus (P < 0.01). ② The expressions of mitochondrial energy-relative proteins, VDAC1 and cytC, were higher in cold-exposure group than in control group with both immunohistochemical staining and Western blot (P < 0.01). ③ Chronic cold exposure increased DNA methylation and histone deacetylation in the pyramidal cells of CA1 area and led to an increase in the expression of histone deacetylase 1 (HDAC1) and DNA methylation relative enzymes (P < 0.01). In conclusion, chronic cold exposure can improve insulin sensitivity, with the involvement of DNA methylation, histone deacetylation and the regulation of mitochondrial energy metabolism. These epigenetic modifications probably form the basic mechanism of cold-reduced insulin resistance.  相似文献   

13.
14.
Histone lysine methylation is a post-translational modification that plays a key role in the epigenetic regulation of a broad spectrum of biological processes. Moreover, the dysregulation of histone lysine methyltransferases (KMTs) has been implicated in the pathogenesis of several diseases particularly cancer. Due to their pathobiological importance, KMTs have garnered immense attention over the last decade as attractive therapeutic targets. These endeavors have culminated in tens of chemical probes that have been used to interrogate many aspects of histone lysine methylation. Besides, over a dozen inhibitors have been advanced to clinical trials, including the EZH2 inhibitor tazemetostat approved for the treatment of follicular lymphoma and advanced epithelioid sarcoma. In this Review, we highlight the chemical biology and pharmacology of KMT inhibitors and targeted protein degraders focusing on the clinical development of EZH1/2, DOT1L, Menin-MLL, and WDR5-MLL inhibitors. We also briefly discuss the pharmacologic targeting of other KMTs.  相似文献   

15.
16.
Histone methylation is believed to play important roles in epigenetic memory in various biological processes. However, questions like whether the methylation marks themselves are faithfully transmitted into daughter cells and through what mechanisms are currently under active investigation. Previously, methylation was considered to be irreversible, but the recent discovery of histone lysine demethylases revealed a dynamic nature of histone methylation regulation on four of the main sites of methylation on histone H3 and H4 tails (H3K4, H3K9, H3K27 and H3K36). Even so, it is still unclear whether demethylases specific for the remaining two sites, H3K79 and H4K20, exist. Furthermore, besides histone proteins, the lysine methylation and demethylation also occur on non-histone proteins, which are probably subjected to similar regulation as histones. This review discusses recent progresses in protein lysine methylation regulation focusing on the above topics, while referring readers to a number of recent reviews for the biochemistry and biology of these enzymes  相似文献   

17.
18.
Role of histone and DNA methylation in gene regulation   总被引:3,自引:0,他引:3  
  相似文献   

19.
20.
The acetylation isoforms of histone H4 from butyrate-treated HeLa cells were separated by C(4) reverse-phase high pressure liquid chromatography and by polyacrylamide gel electrophoresis. Histone H4 bands were excised and digested in-gel with the endoprotease trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was used to characterize the level of acetylation, and nanoelectrospray tandem mass spectrometric analysis of the acetylated peptides was used to determine the exact sites of acetylation. Although there are 15 acetylation sites possible, only four acetylated peptide sequences were actually observed. The tetra-acetylated form is modified at lysines 5, 8, 12, and 16, the tri-acetylated form is modified at lysines 8, 12, and 16, and the di-acetylated form is modified at lysines 12 and 16. The only significant amount of the mono-acetylated form was found at position 16. These results are consistent with the hypothesis of a "zip" model whereby acetylation of histone H4 proceeds in the direction of from Lys-16 to Lys-5, and deacetylation proceeds in the reverse direction. Histone acetylation and deacetylation are coordinated processes leading to a non-random distribution of isoforms. Our results also revealed that lysine 20 is di-methylated in all modified isoforms, as well as the non-acetylated isoform of H4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号