首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Summary Extracellular stimulation over the dorsal funiculus in the spinal cord of lampreys was found to selectively activate prolonged episodes of fictive arousal respiration (Figs. 1, 3). The induced episodes showed comparable increases in cycle frequency and motoneuron burst duration to the spontaneous arousal pattern observed in isolated brain preparations (Fig. 2). Intracellular stimulation of primary sensory neurons with axons in the dorsal funiculus, called dorsal cells, also elicited the arousal pattern (Fig. 4). Mechanoreceptive dorsal cells respond to cutaneous stimulation. When mechanical stimuli were applied to the skin of intact lampreys (Fig. 6) or to lampreys with ipsilateral vagotomy, arousal respiration was induced (Figs. 7, 8). Bilateral, but not unilateral, trigeminal lesion blocked dorsal cell induction of the arousal response (Fig. 5). Spontaneous arousal respiration was recorded from intact, unrestrained lampreys (Fig. 9). These results suggest that fictive arousal respiration is the in vitro correlate of natural arousal respiration in lampreys, and that one mechanism leading to arousal respiration may be the activity of sensory dorsal cells. A model for respiratory motor pattern switching in lamprey is proposed. The model suggests that the normal and arousal patterns are produced by separately engaging rostral or caudal pattern generators in the medulla, rather than by modifying one pattern generator (Fig. 10).  相似文献   

4.
The spinal cord can generate motor patterns underlying several kinds of limb movements. Many spinal interneurons are multifunctional, contributing to multiple limb movements, but others are specialized. It is unclear whether anatomical distributions of activated neurons differ for different limb movements. We examined distributions of activated neurons for locomotion and scratching using an activity-dependent dye. Adult turtles were stimulated to generate repeatedly forward swimming, rostral scratching, pocket scratching, or caudal scratching motor patterns, while sulforhodamine 101 was applied to the spinal cord. Sulforhodamine-labeled neurons were widely distributed rostrocaudally, dorsoventrally, and mediolaterally after each motor pattern, concentrated bilaterally in the deep dorsal horn, the lateral intermediate zone, and the dorsal to middle ventral horn. Labeled neurons were common in all hindlimb enlargement segments and the pre-enlargement segment following swimming and scratching, but a significantly higher percentage were in the rostral segments following swimming than rostral scratching. These findings suggest that largely the same spinal regions are activated during swimming and scratching, but there are some differences that may indicate locations of behaviorally specialized neurons. Finally, the substantial inter-animal variability following a single kind of motor pattern may indicate that essentially the same motor output is generated by anatomically variable networks.  相似文献   

5.
Motor neuron death in amyotrophic lateral sclerosis (ALS) has been linked to selective vulnerability towards AMPA receptor-mediated excitotoxicity. We investigated intracellular mechanisms leading to impairment of motor neuron Ca2+ homeostasis with near physiological AMPA receptor activation. Using fast solution exchange on patch-clamped cultured neurons, kainate (KA) was applied for 2s. This induced a transient increase in the cytosolic Ca2+ concentration ([Ca2+]c) for seconds. Inhibition of the mitochondrial uniporter by RU-360 abolished the decay of the Ca2+ transient and caused immediate [Ca2+]c overload. Repetitive short KA stimulation caused a slowing of the decay of the Ca2+ transient and a gradual increase in peak and baseline [Ca2+]c in motor neurons, but not in other neurons, indicating saturation of the mitochondrial buffer. Furthermore, mitochondrial density was lower in motor neurons and, in a network of neurons with physiological synaptic AMPA receptor input, RU-360 acutely induced an increase in Ca2+ transients. We conclude that motor neurons have an insufficient mitochondrial capacity to buffer large Ca2+ elevations which is partly due to a reduced mitochondrial density per volume compared to non-motor neurons. This may exert deleterious effects in motor neuron disease where mitochondrial function is thought to be compromised.  相似文献   

6.
7.
8.
Experimental studies of mechanisms underlying the specification of synaptic connections in the monosynaptic stretch reflex of frogs and chicks are described. Sensory neurons innervating the triceps brachii muscles of bullfrogs are born throughout the period of sensory neurogenesis and do not appear to be related clonally. Instead, the peripheral targets of these sensory neurons play a major role in determining their central connections with motoneurons. Developing thoracic sensory neurons made to project to novel targets in the forelimb project into the brachial spinal cord, which they normally never do. Moreover, these foreign sensory neurons make monosynaptic excitatory connections with the now functionally appropriate brachial motoneurons. Normal patterns of neuronal activity are not necessary for the formation of specific central connections. Neuromuscular blockade of developing chick embryos with curare during the period of synaptogenesis still results in the formation of correct sensory-motor connections. Competitive interactions among the afferent fibers also do not seem to be important in this process. When the number of sensory neurons projecting to the forelimb is drastically reduced during development, each afferent still makes central connections of the same strength and specificity as normal. These results are discussed with reference to the development of retinal ganglion cells and their projections to the brain. Although many aspects of the two systems are similar, patterned neural activity appears to play a much more important role in the development of the visual pathway than in the spinal reflex pathway described here.  相似文献   

9.
Summary. Spinal motor neurons possess reticular coats of extracellular matrix proteoglycans on their somata and proximal dendrites. In order to define the anatomical background of the network, spatial relationships of the perineuronal proteoglycans with synaptic boutons and astrocyte processes were analyzed in rat motor neurons by TEM after histochemical detection of the substances with cationic iron colloid, and by SEM after exposure of the cytoarchitecture with NaOH maceration. Narrow intercellular channels filled with proteoglycan were found to extend along the surface of the neurons to form a homogeneous network of a mesh size of about 1 µm. The system of perineuronal channels consisted of two parts: a primary intervaricose net which meandered among synaptic boutons on the surface of the motor neuron, and secondary subvaricose nets which irrigated interfaces between larger boutons and the neuron. No elements in the perineuronal cytoarchitecture coincided with the meshwork of proteoglycan, indicating the involvement of postsynaptic factors in the distribution of the substance. Thin astrocyte processes surrounding the neurons formed a distinct network with heterogeneous meshes corresponding to boutons of various sizes. The perineuronal glial nets extended their surface area in contact with the intervaricose nets of proteoglycan by complex cellular interdigitations. The subvaricose nets of proteoglycan compartmentalized multiple synapses on large boutons, suggesting an involvement in the division of the synapses during development.  相似文献   

10.
11.
Unlike mammals, fish motor function can recover within 6–8 weeks after spinal cord injury (SCI). The motor function of zebrafish is regulated by dual control; the upper motor neurons of the brainstem and motor neurons of the spinal cord. In this study, we aimed to investigate the framework behind the regeneration of upper motor neurons in adult zebrafish after SCI. In particular, we investigated the cell survival of axotomized upper motor neurons and its molecular machinery in zebrafish brain. As representative nuclei of upper motor neurons, we retrogradely labeled neurons in the nucleus of medial longitudinal fasciculus (NMLF) and the intermediate reticular formation (IMRF) using a tracer injected into the lesion site of the spinal cord. Four to eight neurons in each thin sections of the area of NMLF and IMRF were successfully traced at least 1–15 days after SCI. TUNEL staining and BrdU labeling assay revealed that there was no apoptosis or cell proliferation in the axotomized neurons of the brainstem at various time points after SCI. In contrast, axotomized neurons labeled with a neurotracer showed increased expression of anti-apoptotic factors, such as Bcl-2 and phospho-Akt (p-Akt), at 1–6 days after SCI. Such a rapid increase of Bcl-2 and p-Akt protein levels after SCI was quantitatively confirmed by western blot analysis. These data strongly indicate that upper motor neurons in the NMLF and IMRF can survive and regrow their axons into the spinal cord through the rapid activation of anti-apoptotic molecules after SCI. The regrowing axons from upper motor neurons reached the lesion site at 10–15 days and then crossed at 4–6 weeks after SCI. These long-distance descending axons from originally axotomized neurons have a major role in restoration of motor function after SCI.  相似文献   

12.
Inglis FM  Zuckerman KE  Kalb RG 《Neuron》2000,26(2):299-305
Locomotor activity in many species undergoes pronounced alterations in early postnatal life, and environmental cues may be responsible for modifying this process. To determine how these events are reflected in the nervous system, we studied rats reared under two different conditions-the presence or absence of gravity-in which the performance of motor operations differed. We found a significant effect of rearing environment on the size and complexity of dendritic architecture of spinal motor neurons, particularly those that are likely to participate in postural control. These results provide evidence that neurons subserving motor function undergo activity-dependent maturation in early postnatal life in a manner analogous to sensory systems.  相似文献   

13.
14.
15.
16.
The experiments have been performed on 98 white rats adapted and nonadapted to the effect of physical loadings. The loadings up to the limit are reached by swimming of the rats up to fatigue. The swimming lasts for 10-15, 20-35, 40-65, 70-90 h. Under the conditions mentioned, morphological changes of the neurons are of mosaic pattern. Light optic and electron microscopic methods demonstrate swelling of neurons, endocellular and pericellular edema, vacuolization, appearance of gigantic degeneratively altered mitochondria, presence of vesicles in mitochondria, hollow mitochondria, dilated cysterns of the endoplasmic reticulum, degenerated synapses and glial reaction. These changes are considered as adaptive and compensatory reactions in the process of physiological strain of the organism, directed towards increasing stability against the effect of the extermal factor. In the animals nonadapted to any physical loadings, morphological changes in neurons of the ventral horns of the spinal cord are more deeply and widely spread in character.  相似文献   

17.
18.
Motor nuclei of the cat cervical spinal cord are formed by groups of neurons differing in their mediator metabolism. From 40 to 65% are true motor (cholinergic) neurons. The localization of the precipitate of the reaction for acetylcholinesterase in the perinuclear space, on the membranes of the granular reticulum, axolemma, neurofilaments, and neurotubules of the axons, and in the synaptosomes and synaptic space are evidence of the possible perinuclear synthesis of the enzyme and of its transport with the flow of axoplasm. Comparison with the autoradiographic detection of glycine showed that large motor neurons form groups with small short-axon glycine-containing neurons, which make contact with them. The motor neurons have polyreceptive properties, for endings containing cholinesterase, glycine, noradrenalin, and serotonin, as well as unidentified endings are present on their soma and processes.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukranian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 191–197, March–April, 1977.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号