首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study, we describe a new approach to the production of naïve/synthetic human antibodies against the botulinum neurotoxin (BoNT). First, peptides that bind to BoNT serotype A (BoNT/A) were screened from a phage display of a combinatorial peptide library. One peptide, designated ANT 12-2 (TLPSPLALLTVH), was determined to interact with BoNT/A, as well as with other serotypes of BoNT. This peptide specifically reacted with the native form of BoNT/A, but not with its formalin-inactivated form. Next, a hybrid naïve/synthetic human Fab library was generated via the grafting of a peptide motif from ANT 12-2 into HCDR3 with randomized flanking residues. Through biopanning, the Fab clone, ANTHU-1, which harbors the HCDR3 sequence of VRIQRSPLALLSWGDV, was selected and confirmed in order to retain the same BoNT-binding characteristics as ANT 12-2.  相似文献   

3.
Authentic or na?ve embryonic stem cells (ESC) have probably never been derived from the inner cell mass (ICM) of pig blastocysts, despite over 25 years of effort. Recently, several groups, including ours, have reported induced pluripotent stem cells (iPSC) from swine by reprogramming somatic cells with a combination of four factors, OCT4 (POU5F1)/SOX2/KLF4/c-MYC delivered by retroviral transduction. The porcine (p) iPSC resembled human (h) ESC and the mouse "Epiblast stem cells" (EpiSC) in their colony morphology and expression of pluripotent genes, and are likely dependent on FGF2/ACTIVIN/NODAL signaling, therefore representing a primed ESC state. These cells are likely to advance swine as a model in biomedical research, since grafts could potentially be matched to the animal that donated the cells for re-programming. The objective of the present work has been to develop na?ve piPSC. Employing a combination of seven reprogramming factors assembled on episomal vectors, we successfully reprogrammed porcine embryonic fibroblasts on a modified LIF-medium supplemented with two kinase inhibitors; CHIR99021, which inhibits GSK-3beta, and PD0325901, a MEK inhibitor. The derived piPSC bear a striking resemblance to na?ve mESC in colony morphology, are dependent on LIF to maintain an undifferentiated phenotype, and express markers consistent with pluripotency. They exhibit high telomerase activity, a short cell cycle interval, and a normal karyotype, and are able to generate teratomas. Currently, the competence of these lines for contributing to germ-line chimeras is being tested.  相似文献   

4.
Cell surface glycans are tissue-specific and developmentally regulated. They function as essential modulators in cell-cell interactions, cell-extracellular matrix interactions, and ligand-receptor interactions, binding to various ligands, including Wnt, fibroblast growth factors, and bone morphogenetic proteins. Embryonic stem (ES) cells, originally derived from the inner cell mass of blastocysts, have the essential characteristics of pluripotency and self-renewal. Recently, it has been proposed that mouse and human conventional ES cells are present in different developmental stages, namely pre-implantation blastocyst and post-implantation blastocyst stages, also called the naïve state and the primed state, respectively. They therefore require different extrinsic signals for the maintenance of self-renewal and pluripotency, and also appear to require different surface glycans. Understanding of molecular mechanisms involving glycans in self-renewal and pluripotency of ES cells is increasingly important for potential clinical applications, as well as for basic research. This review focuses on the roles of glycans in the two different states of pluripotent stem cells, namely the naïve state and the primed state, and the transition between these two states.  相似文献   

5.
During embryonic development, neural stem cells (NSCs) emerge as early as the neural plate stage and give rise to the nervous system. Early-stage NSCs express Sry-related-HMG box-1 (Sox1) and are biased towards neuronal differentiation. However, long-term maintenance of early-stage NSCs in vitro remains a challenge. Here, we report development of a defined culture condition for the long-term maintenance of Sox1-positive early-stage mouse NSCs. The proliferative ability of these Sox1-positive NSCs was confirmed by clonal propagation. Compared to the NSCs cultured using the traditional culture condition, the long-term self-renewing Sox1-positive NSCs efficiently differentiate into neurons and exhibit an identity representative of the anterior and midbrain regions. These early-stage Sox1-positive NSCs could also be switched to late-stage NSCs by being cultured with bFGF/EGF, which can then differentiate into astrocytes and oligodendrocytes. The long-term self-renewing Sox1-positive NSCs were defined as naïve NSCs, based on their high neuronal differentiation capacity and anterior regional identity. This culture condition provides a robust platform for further dissection of the NSC self-renewal mechanism and promotes potential applications of NSCs for cell-based therapy on nervous system disorders.  相似文献   

6.
AIM: To determine the tissue and temporal distribution of human umbilical cord matrix stem (hUCMS) cells in severe combined immunodeficiency (SCID) mice. METHODS: For studying the localization of hUCMS cells, tritiated thymidine-labeled hUCMS cells were injected in SCID mice and tissue distribution was quantitatively determined using a liquid scintillation counter at days 1, 3, 7 and 14. Furthermore, an immunofluorescence detection technique was employed in which anti-human mitochondrial antibody was used to identify hUCMS cells in mouse tissues. In order to visualize the distribution of transplanted hUCMS cells in H&E stained tissue sections, India Black ink 4415 was used to label the hUCMS cells. RESULTS: When tritiated thymidine-labeled hUCMS cells were injected systemically (iv) in female SCID mice, the lung was the major site of accumulation at 24 h after transplantation. With time, the cells migrated to other tissues, and on day three, the spleen, stomach, and small and large intestines were the major accumulation sites. On day seven, a relatively large amount of radioactivity was detected in the adrenal gland, uterus, spleen, lung, and digestive tract. In addition, labeled cells had crossed the blood brain barrier by day 1. CONCLUSION: These results indicate that peripherally injected hUCMS cells distribute quantitatively in a tissue-specific manner throughout the body.  相似文献   

7.
Signaling pathways orchestrated by PI3K/Akt, Raf/Mek/Erk and Wnt/β-catenin are known to play key roles in the self-renewal and differentiation of pluripotent stem cells. The serine/threonine protein kinase Gsk3β has roles in all three pathways, making its exact function difficult to decipher. Consequently, conflicting reports have implicated Gsk3β in promoting self-renewal, while others suggest that it performs roles in the activation of differentiation pathways. Different thresholds of Gsk3β activity also have different biological effects on pluripotent cells, making this situation even more complex. Here, we describe a further level of complexity that is most apparent when comparing “naïve” murine and “primed” human pluripotent stem cells. In naïve cells, Gsk3β activity is restrained by PI3K/Akt, but when released from inhibitory signals it antagonizes self-renewal pathways by targeting pluripotency factors such as Myc and Nanog. This situation also applies in primed cells, but, in addition, a separate pool of Gsk3β is required to suppress canonical Wnt signaling. These observations suggest that different Gsk3β-protein complexes shift the balance between naïve and primed pluripotent cells and identify fundamental differences in their cell signaling. Altogether, these findings have important implications for the mechanisms underpinning the establishment of different pluripotent cell states and for the control of self-renewal and differentiation.  相似文献   

8.
9.
T cells play an indispensable role in immune defense against infectious agents, but can also be pathogenic. These T cells develop in the thymus, are exported into the periphery as naïve cells and participate in immune responses. Upon recognition of antigen, they are activated and differentiate into effector and memory T cells. While effector T cells carry out the function of the immune response, memory T cells can last up to the life time of the individual, and are activated by subsequent antigenic exposure. Throughout this life cycle, the T cell uses the same receptor for antigen, the T cell Receptor, a complex multi-subunit receptor. Recognition of antigen presented by peptide/MHC complexes on antigen presenting cells unleashes signaling pathways that control T cell activation at each stage. In this review, we discuss the signals regulated by the T cell receptor in naïve and effector/memory T cells.  相似文献   

10.
Coffee is a globally consumed beverage with potential health benefits. However, there are few reports about the effects of coffee on immunological functions. We previously reported that in an allergic mouse model, coffee intake prevented allergy development through augmentation of interleukin (IL)-12p40. In order to investigate the anti-allergic activity of coffee, we examined the effect of coffee on antigen (Ag)-specific responses of immune cells in vitro. Coffee treatment suppressed proliferation and IL-2 secretion of mouse splenocytes in the same way as splenocytes from mice administered coffee orally. However, IL-12p40 secretion decreased significantly as a result of in vitro coffee treatment, which was contrary to the results obtained from experiments of mice administered coffee orally. Therefore, modification associated with oral administration might influence the anti-allergic activity of coffee.  相似文献   

11.
12.
A short G1 phase is a characteristic feature of mouse embryonic stem cells (ESCs). To determine if there is a causal relationship between G1 phase restriction and pluripotency, we made use of the Fluorescence Ubiquitination Cell Cycle Indicator (FUCCI) reporter system to FACS-sort ESCs in the different cell cycle phases. Hence, the G1 phase cells appeared to be more susceptible to differentiation, particularly when ESCs self-renewed in the naïve state of pluripotency. Transitions from ground to naïve, then from naïve to primed states of pluripotency were associated with increased durations of the G1 phase, and cyclin E-mediated alteration of the G1/S transition altered the balance between self-renewal and differentiation. LIF withdrawal resulted in a lengthening of the G1 phase in naïve ESCs, which occurred prior to the appearance of early lineage-specific markers, and could be reversed upon LIF supplementation. We concluded that the short G1 phase observed in murine ESCs was a determinant of naïve pluripotency and was partially under the control of LIF signaling.  相似文献   

13.
《MABS-AUSTIN》2013,5(3):264-272
Human monoclonal antibodies (mAbs) can routinely be isolated from phage display libraries against virtually any protein available in sufficient purity and quantity, but library design can influence epitope coverage on the target antigen. Here we describe the construction of a novel synthetic human antibody phage display library that incorporates hydrophilic or charged residues at position 52 of the CDR2 loop of the variable heavy chain domain, instead of the serine residue found in the corresponding germline gene. The novel library was used to isolate human mAbs to various antigens, including the alternatively-spliced EDA domain of fibronectin, a marker of tumor angiogenesis. In particular, the mAb 2H7 was proven to bind to a novel epitope on EDA, which does not overlap with the one recognized by the clinical-stage F8 antibody. F8 and 2H7 were used for the construction of chelating recombinant antibodies (CRAbs), whose tumor-targeting properties were assessed in vivo in biodistribution studies in mice bearing F9 teratocarcinoma, revealing a preferential accumulation at the tumor site.  相似文献   

14.
Most commercial media for mammalian cell culture are designed to satisfy the amino acid requirements for cell growth, but not necessarily those for recombinant protein production. In this study, we analyze the amino acid consumption pattern in naïve and recombinant Chinese hamster ovary (CHO) cell cultures. The recombinant model we chose was a CHO-S cell line engineered to produce a monoclonal antibody. We report the cell concentration, product concentration, and amino acid concentration profiles in naïve and recombinant cell cultures growing in CD OptiCHO™ medium with or without amino acid supplementation with a commercial supplement (CHO CD EfficientFeed™ B). We quantify and discuss the amino acid demands due to cell growth and recombinant protein production during long term fed batch cultivation protocols. We confirmed that a group of five amino acids, constituting the highest mass fraction of the product, shows the highest depletion rates and could become limiting for product expression. In our experiments, alanine, a non-important mass constituent of the product, is in high demand during recombinant protein production. Evaluation of specific amino acid demands could be of great help in the design of feeding/supplementation strategies for recombinant mammalian cell cultures.  相似文献   

15.
Signaling pathways orchestrated by PI3K/Akt, Raf/Mek/Erk and Wnt/β-catenin are known to play key roles in the self-renewal and differentiation of pluripotent stem cells. The serine/threonine protein kinase Gsk3β has roles in all three pathways, making its exact function difficult to decipher. Consequently, conflicting reports have implicated Gsk3β in promoting self-renewal, while others suggest that it performs roles in the activation of differentiation pathways. Different thresholds of Gsk3β activity also have different biological effects on pluripotent cells, making this situation even more complex. Here, we describe a further level of complexity that is most apparent when comparing “naïve” murine and “primed” human pluripotent stem cells. In naïve cells, Gsk3β activity is restrained by PI3K/Akt, but when released from inhibitory signals it antagonizes self-renewal pathways by targeting pluripotency factors such as Myc and Nanog. This situation also applies in primed cells, but, in addition, a separate pool of Gsk3β is required to suppress canonical Wnt signaling. These observations suggest that different Gsk3β-protein complexes shift the balance between naïve and primed pluripotent cells and identify fundamental differences in their cell signaling. Altogether, these findings have important implications for the mechanisms underpinning the establishment of different pluripotent cell states and for the control of self-renewal and differentiation.  相似文献   

16.
The processes that lead to the establishment and maintenance of memory T-cell pools in humans are not well understood. In this study, we examined the emergence of na?ve and memory T cells in an adult male who was exposed to an atomic bomb radiation dose of approximately 2 Gy in 1945 at the age of 17. The analysis presented here was made possible by our earlier observation that this particular individual carries a hematopoietic stem cell mutation at the hypoxanthine phosphoribosyltransferase (HPRT) locus that is almost certainly a result of his exposure to A-bomb radiation. Our key finding is that we detected a very much higher HPRT mutant frequency in the naive (CD45RA(+)) cell component of this individual's CD4 and CD8 T-cell populations than in the memory (CD45RA(-)) cell component of his CD4 and CD8 T-cell populations. This stands in marked contrast to our finding that HPRT mutant frequencies are fairly similar in the na?ve CD45RA(+) and memory CD45RA(-) components of the CD4 and CD8 T-cell populations of three unexposed individuals examined concurrently. In addition we found that the HPRT mutant frequencies were about 30-fold higher in the na?ve (CD45RA(+)) CD4 T cells of the exposed individual than in his memory (CD45RA(-)) cell populations, but that the effect was a little less striking in his CD8 cell populations, where the HPRT mutant frequencies were only about 15-fold higher in his na?ve T-cell pools than in his memory T-cell pools. We further found that 100% of the HPRT mutant cells in both his CD4 and CD8 na?ve cell subsets appeared to have originated from repeated divisions of the initial HPRT mutant stem cell, whereas only 4 of 24 and 5 of 6 mutant cells in his CD4 and CD8 memory cell subsets appeared to have originated from that same stem cell. The most straightforward conclusion may be that the great majority of the T cells produced by this individual since he was 17 years old have remained as na?ve-type T cells, rather than having become memory-type T cells. Thus the T cells that have been produced from the hematopoietic stem cells of this particular A-bomb-exposed individual seldom seem to enter and/or to remain in the memory T-cell pool for long periods. We speculate that this constraint on entry into memory T-cell pools may also apply to unirradiated individuals, but in the absence of genetic markers to assist us in obtaining evidential support, we must await clarifying information from radically different experimental approaches.  相似文献   

17.
AIM To identify differences between primed mouse embryonic stem cells(ESCs) and fully functional naive ESCs; to manipulate primed cells into a naive state. METHODS We have cultured 3 lines of cells from different mouse strains that have been shown to be naive or primed as determined by generating germline-transmitting chimeras.Cells were put through a battery of tests to measure the different features. RNA from cells was analyzed using microarrays, to determine a priority list of the differentially expressed genes. These were later validated by quantificational real-time polymerase chain reaction. Viral cassettes were created to induce expression of differentially expressed genes in the primed cells through lentiviral transduction. Primed reprogrammed cells were subjected to in-vivo incorporation studies.RESULTS Most results show that both primed and naive cells have similar features(morphology, proliferation rates, stem cell genes expressed). However, there were some genes that were differentially expressed in the na?ve cells relative to the primed cells. Key upregulated genes in na?ve cells include ESRRB, ERAS, ATRX, RNF17, KLF-5, and MYC. After over-expressing some of these genes the primed cells were able to incorporate into embryos in-vivo, re-acquiring a feature previously absent in these cells. CONCLUSION Although there are no notable phenotypic differences, there are key differences in gene expression between these na?ve and primed stem cells. These differences can be overcome through overexpression.  相似文献   

18.
The characteristics of pluripotent embryonic stem cells of human and mouse are different. The properties of human embryonic stem cells (hESCs) are similar to those of mouse epiblast stem cells (mEpiSCs), which are in a later developmental pluripotency state, the so-called “primed state” compared to mouse embryonic stem cells (mESCs) which are in a naïve state. As a result of the properties of the primed state, hESCs proliferate slowly, cannot survive as single cells, and can only be transfected with genes at low efficiency. Generating hESCs in the naïve state is necessary to overcome these problems and allow their application in regenerative medicine. Therefore, clarifying the mechanism of the transition between the naïve and primed states in pluripotent stem cells is important for the establishment of stable methods of generating naïve state hESCs. However, the signaling pathways which contribute to the transition between the naïve and primed states are still unclear. In this study, we carried out induction from mESCs to mEpiSC-like cells (mEpiSCLCs), and observed an increase in the activation of Fas signaling during the induction. The expression of Fgf5, an epiblast marker, was diminished by inhibition of Fas signaling using the caspase-8 and -3 blocking peptides, IETD and DEVD, respectively. Furthermore, during the induction, we observed increased expression of 3-O sulfated heparan sulfate (HS) structures synthesized by HS 3-O-sulfotransferase (3OST), which are recognized by the HS4C3 antibody (HS4C3-binding epitope). Knockdown of 3OST-5 reduced Fas signaling and the potential for the transition to mEpiSCLCs. This indicates that the HS4C3-binding epitope is necessary for the transition to the primed state. We propose that Fas signaling through the HS4C3-binding epitope contributes to the transition from the naïve state to the primed state.  相似文献   

19.
The successful generation of a high yield of mesenchymal stem cells (MSCs) from human induced pluripotent stem cells (iPSCs) may represent an unlimited cell source with superior therapeutic benefits for tissue regeneration to bone marrow (BM)-derived MSCs. We investigated whether the differential expression of ion channels in iPSC-MSCs was responsible for their higher proliferation capacity than BM-MSCs. The expression of ion channels for K(+), Na(+), Ca(2+), and Cl(-) was examined by RT-PCR. The electrophysiological properties of iPSC-MSCs and BM-MSCs were then compared by patch-clamp experiments to verify their functional roles. Significant mRNA expression of ion channel genes including KCa1.1, KCa3.1, KCNH1, Kir2.1, SCN9A, CACNA1C, and Clcn3 was observed in both human iPSC-MSCs and BM-MSCs, whereas Kir2.2 and Kir2.3 were only detected in human iPSC-MSCs. Five types of currents [big-conductance Ca(2+)-activated K(+) current (BK(Ca)), delayed rectifier K(+) current (IK(DR)), inwardly rectifying K(+) current (I(Kir)), Ca(2+)-activated K(+) current (IK(Ca)), and chloride current (I(Cl))] were found in iPSC-MSCs (83%, 47%, 11%, 5%, and 4%, respectively) but only four of them (BK(Ca), IK(DR), I(Kir), and IK(Ca)) were identified in BM-MSCs (76%, 25%, 22%, and 11%, respectively). Cell proliferation was examined with MTT or bromodeoxyuridine assay, and doubling times were 2.66 and 3.72 days for iPSC-MSCs and BM-MSCs, respectively, showing a 1.4-fold discrepancy. Blockade of IK(DR) with short hairpin RNA or human ether-à-go-go 1 (hEAG1) channel blockers, 4-AP and astemizole, significantly reduced the rate of proliferation of human iPSC-MSCs. These treatments also decreased the rate of proliferation of human BM-MSCs albeit to a lesser extent. These findings demonstrate that the hEAG1 channel plays a crucial role in controlling the proliferation rate of human iPSC-MSCs and to a lesser extent in BM-MSCs.  相似文献   

20.

Background aims

We have previously reported the generation of a current Good Manufacture Practice (cGMP)-compliant induced pluripotent stem cell (iPSC) line for clinical applications. Here we show that multiple cellular products currently being considered for therapy can be generated from a single master cell bank of this or any other clinically compliant iPSC line

Methods

Using a stock at passage 20 prepared from the cGMP-compliant working cell bank (WCB), we tested differentiation into therapeutically relevant cell types of the three germ layers using standardized but generic protocols. Cells that we generated include (i) neural stem cells, dopaminergic neurons and astrocytes; (ii) retinal cells (retinal pigment epithelium and photoreceptors); and (iii) hepatocyte, endothelial and mesenchymal cells. To confirm that these generic protocols can also be used for other iPSC lines, we tested the reproducibility of our methodology with a second clinically compliant line

Results

Our results confirmed that well-characterized iPSC lines have broad potency, and, despite allelic variability, the same protocols could be used with minimal modifications with multiple qualified lines. In addition, we introduced a constitutively expressed GFP cassette in Chr13 safe harbor site using a standardized previously described method and observed no significant difference in growth and differentiation between the engineered line and the control line indicating that engineered products can be made using a standardized methodology

Conclusions

We believe that our demonstration that multiple products can be made from the same WCB and that the same protocols can be used with multiple lines offers a path to a cost-effective strategy for developing cellular products from iPSC lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号