首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulation of stem cell self-renewal must balance the regenerative needs of tissues that persist throughout life with the potential for cell overgrowth, transformation and cancer. Here, we attempt to deconstruct the relationship that exists between cell-cycle progression and the self-renewal versus commitment cell-fate decision in embryonic and adult stem cells. Recent genetic studies in mice have provided insights into the regulation of the cell cycle in stem cells, including its potential modulation by the stem cell niche. Although the dynamics of the embryonic and adult stem cell cycles are profoundly dissimilar, we suggest that shared principles underlie the governance of this important decision point in diverse stem cell types.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Complexity in the spatial organization of human embryonic stem cell (hESC) cultures creates heterogeneous microenvironments (niches) that influence hESC fate. This study demonstrates that the rate and trajectory of hESC differentiation can be controlled by engineering hESC niche properties. Niche size and composition regulate the balance between differentiation-inducing and -inhibiting factors. Mechanistically, a niche size-dependent spatial gradient of Smad1 signaling is generated as a result of antagonistic interactions between hESCs and hESC-derived extra-embryonic endoderm (ExE). These interactions are mediated by the localized secretion of bone morphogenetic protein-2 (BMP2) by ExE and its antagonist, growth differentiation factor-3 (GDF3) by hESCs. Micropatterning of hESCs treated with small interfering (si) RNA against GDF3, BMP2 and Smad1, as well treatments with a Rho-associated kinase (ROCK) inhibitor demonstrate that independent control of Smad1 activation can rescue the colony size-dependent differentiation of hESCs. Our results illustrate, for the first time, a role for Smad1 in the integration of spatial information and in the niche-size-dependent control of hESC self-renewal and differentiation.  相似文献   

9.
10.
Exosomes are mobile extracellular vesicles with a diameter 40 to 150 nm. They play a critical role in several processes such as the development of cancers, intercellular signaling, drug resistance mechanisms, and cell-to-cell communication by fusion onto the cell membrane of recipient cells. These vesicles contain endogenous proteins and both noncoding and coding RNAs (microRNA and messenger RNAs) that can be delivered to various types of cells. Furthermore, exosomes exist in body fluids such as plasma, cerebrospinal fluid, and urine. Therefore, they could be used as a novel carrier to deliver therapeutic nucleic-acid drugs for cancer therapy. It was recently documented that, hypoxia promotes exosomes secretion in different tumor types leading to the activation of vascular cells and angiogenesis. Cancer cell-derived exosomes (CCEs) have been used as prognostic and diagnostic markers in many types of cancers because exosomes are stable at 4°C and −70°C. CCEs have many functional roles in tumorigenesis, metastasis, and invasion. Consequently, this review presents the data about the therapeutic application of exosomes and the role of CCEs in cancer invasion, drug resistance, and metastasis.  相似文献   

11.
12.
13.
The invertebrate panallergen tropomyosin is a protein with an extremely simple folding. This makes it a perfect target for investigating structural differences between invertebrate and vertebrate tropomyosins, which are not considered allergenic. Phylogenetic and sequence analyses were conducted in order to explore the differences in primary structure between several tropomyosins and to promote an experimental development in the field of food allergy, based on the study of tropomyosin. The phylogenetic analyses showed that tropomyosin is a useful evolutionary marker. The phylogenetic trees obtained with tropomyosin were not always phylogenetically correct, but they might be useful for allergen avoidance by tropomyosin allergic individuals. Sequence analyses revealed that the probability of alpha helix folding in invertebrate tropomyosins was lower than in all the studied vertebrate ones, except for the Atlantic bluefin tuna Thunnus thynnus tropomyosin. This suggested that the lack of alpha helix folding may be involved in the immunogenicity of tropomyosins. More specifically, the regions adjacent to the positions 133–135 and 201 of the invertebrate tropomyosins, presented lower probability of alpha helix folding than those of vertebrates and are candidates to be responsible for their allergenicity.  相似文献   

14.
15.
16.
New insights into the mechanisms of protein palmitoylation   总被引:11,自引:0,他引:11  
Linder ME  Deschenes RJ 《Biochemistry》2003,42(15):4311-4320
Since its discovery more than 30 years ago, protein palmitoylation has been shown to have a role in protein-membrane interactions, protein trafficking, and enzyme activity. Until recently, however, the molecular machinery that carries out reversible palmitoylation of proteins has been elusive. In fact, both enzymatic and nonenzymatic S-acylation reaction mechanisms have been proposed. Recent reports of protein palmitoyltransferases in Saccharomyces cerevisiae and Drosophila provide the first glimpse of enzymes that carry out protein palmitoylation. Equally important is the mechanism of depalmitoylation. Two major classes of protein palmitoylthioesterases have been described. One family is lysosomal and is involved in protein degradation. The second is cytosolic and removes palmitoyl moieties preferentially from proteins associated with membranes. This review discusses recent advances in the understanding of mechanisms of addition of palmitate to proteins and removal of palmitate from proteins.  相似文献   

17.
Autophagy is an evolutionary ancient process based on the activity of genes conserved from yeast to metazoan taxa. Whereas its role as a mechanism to provide energy during cell starvation is commonly accepted, debate continues about the occurrence of autophagy as a means specifically activated to achieve cell death. The IPLB-LdFB insect cell line, derived from the larval fat body of the lepidoptera Lymantria dispar, represents a suitable model to address this question, as both autophagic and apoptotic cell death can be induced by various stimuli. Using morphological and functional approaches, we have observed that the culture medium conditioned by IPLB-LdFB cells committed to death by the ATPase inhibitor oligomycin A stimulates autophagic cell death in untreated IPLB-LdFB cells. Moreover, proteomic analysis of the conditioned media suggests that, in IPLB-LdFB cells, oligomycin A promotes a shift towards lipid metabolism, increases oxidative stress and specifically directs the cells towards autophagic activity. Electronic Supplementary Material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by an F.A.R. grant from the University of Modena and Reggio Emilia (D.M. and E.O.) and by an “Experimental approaches to the study of evolution” grant from the Department of Animal Biology of the University of Modena and Reggio Emilia (D.M.).  相似文献   

18.
MEK/ERK signaling plays a crucial role in a diverse set of cellular functions including cell proliferation, differentiation and survival, and recently has been reported to negatively regulate mouse embryonic stem cell (mESC) self-renewal by antagonizing STAT3 activity. However, its role in human ESCs (hESCs) remains unclear. Here we investigated the functions of MEK/ERK in controlling hESC activity. We demonstrated that MEK/ERK kinases were targets of fibroblast growth factor (FGF) pathway in hESCs. Surprisingly, we found that, in contrast to mESCs, high basal MEK/ERK activity was required for maintaining hESCs in an undifferentiated state. Inhibition of MEK/ERK activity by specific MEK inhibitors PD98059 and U0126, or by RNA interference, rapidly caused the loss of self-renewal capacity. We also showed that MEK/ERK signaling cooperated with phosphoinositide 3-kinase (PI3K)/AKT signaling in maintaining hESC pluripotency. However, MEK/ERK signaling had little or no effect on regulating hESC proliferation and survival, in contrast to PI3K/AKT signaling. Taken together, these findings reveal the unique and crucial role of MEK/ERK signaling in the determination of hESC cell fate and expand our understanding of the molecular mechanisms behind the FGF pathway maintenance of hESC pluripotency. Importantly, these data make evident the striking differences in the control of self-renewal between hESCs and mESCs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号