首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 697 毫秒
1.
Fear‐potentiated acoustic startle paradigms have been used to investigate phasic and sustained components of conditioned fear in rats and humans. This study describes a novel training protocol to assess phasic and sustained fear in freely behaving C57BL/6J mice, using freezing and/or fear‐potentiated startle as measures of fear, thereby, if needed, allowing in vivo application of various techniques, such as optogenetics, electrophysiology and pharmacological intervention, in freely behaving animals. An auditory Pavlovian fear conditioning paradigm, with pseudo‐randomized conditioned–unconditioned stimulus presentations at various durations, is combined with repetitive brief auditory white noise burst presentations during fear memory retrieval 24 h after fear conditioning. Major findings are that (1) a motion sensitive platform built on mechano‐electrical transducers enables measurement of startle responses in freely behaving mice, (2) absence or presence of startle stimuli during retrieval as well as unpredictability of a given threat determine phasic and sustained fear response profiles and (3) both freezing and startle responses indicate phasic and sustained components of behavioral fear, with sustained freezing reflecting unpredictability of conditioned stimulus (CS)/unconditioned stimulus (US) pairings. This paradigm and available genetically modified mouse lines will pave the way for investigation of the molecular and neural mechanisms relating to the transition from phasic to sustained fear.  相似文献   

2.
Immediate early genes (IEGs) are widely used as markers to delineate neuronal circuits because they show fast and transient expression induced by various behavioral paradigms. In this study, we investigated the expression of the IEGs c-fos and Arc in the auditory cortex of the mouse after auditory cued fear conditioning using quantitative polymerase chain reaction and microarray analysis. To test for the specificity of the IEG induction, we included several control groups that allowed us to test for factors other than associative learning to sounds that could lead to an induction of IEGs. We found that both c-fos and Arc showed strong and robust induction after auditory fear conditioning. However, we also observed increased expression of both genes in any control paradigm that involved shocks, even when no sounds were presented. Using mRNA microarrays and comparing the effect of the various behavioral paradigms on mRNA expression levels, we did not find genes being selectively upregulated in the auditory fear conditioned group. In summary, our results indicate that the use of IEGs to identify neuronal circuits involved specifically in processing of sound cues in the fear conditioning paradigm can be limited by the effects of the aversive unconditional stimulus and that activity levels in a particular primary sensory cortical area can be strongly influenced by stimuli mediated by other modalities.  相似文献   

3.
Pigs submitted to extinction of a signaled conditioned avoidance response were injected daily with various doses of dexamethasone (DX) or ACTH. Pigs treated with 0.2 mg/kg of DX showed a higher number of intertrial crosses, but the extinction rate was not modified by either treatment. The effects of ACTH and DX were further studied on the reaction to a Pavlovian conditioned fear signal presented to pigs having learned a continuous avoidance response in a shuttle-box. DX treatment before both the fear conditioning and the test sessions enhanced the reaction to the fear signal at intermediate doses (0.2 mg/kg) but had little effect at lower (0.1 mg/kg) and higher doses (0.5 and 1 mg/kg). ACTH 1–24 treatment induced the same behavioral changes as intermediate doses of DX. A behaviorally active ACTH 4–9 analog, Org 2766, did not modify behavioral reaction to fear signal presentations when administered before fear conditioning and/or test sessions. These results demonstrate that, in pigs, avoidance performance changes under fear signal presentations are modulated by corticosteroids.  相似文献   

4.
Learning to fear danger in the environment is essential to survival, but dysregulation of the fear system is at the core of many anxiety disorders. As a consequence, a great interest has emerged in developing strategies for suppressing fear memories in maladaptive cases. Recent research has focused in the process of reconsolidation where memories become labile after being retrieved. In a behavioral manipulation, Schiller et al., (2010) reported that extinction training, administrated during memory reconsolidation, could erase fear responses. The implications of this study are crucial for the possible treatment of anxiety disorders without the administration of drugs. However, attempts to replicate this effect by other groups have been so far unsuccessful. We sought out to reproduce Schiller et al., (2010) findings in a different fear conditioning paradigm based on auditory aversive stimuli instead of electric shock. Following a within-subject design, participants were conditioned to two different sounds and skin conductance response (SCR) was recorded as a measure of fear. Our results demonstrated that only the conditioned stimulus that was reminded 10 minutes before extinction training did not reinstate a fear response after a reminder trial consisting of the presentation of the unconditioned stimuli. For the first time, we replicated Schiller et al., (2010) behavioral manipulation and extended it to an auditory fear conditioning paradigm.  相似文献   

5.
Fear conditioning is an associative learning process by which organisms learn to avoid environmental stimuli that are predictive of aversive outcomes. Fear extinction learning is a process by which avoidance of fear‐conditioned stimuli is attenuated when the environmental stimuli is no longer predictive of the aversive outcome. Aberrant fear conditioning and extinction learning are key elements in the development of several anxiety disorders. The 129S1 inbred strain of mice is used as an animal model for maladaptive fear learning because this strain has been shown to generalize fear to other nonaversive stimuli and is less capable of extinguishing fear responses relative to other mouse strains, such as the C57BL/6. Here we report new environmental manipulations that enhance fear and extinction learning, including the ability to discriminate between an aversively paired tone and a neutral tone, in both the 129S1 and C57BL/6 strains of mice. Specifically, we show that discontinuous (“pipped”) tone stimuli significantly enhance within‐session extinction learning and the discrimination between neutral and aversively paired stimuli in both strains. Furthermore, we find that extinction training in novel contexts significantly enhances the consolidation and recall of extinction learning for both strains. Cumulatively, these results underscore how environmental changes can be leveraged to ameliorate maladaptive learning in animal models and may advance cognitive and behavioral therapeutic strategies.  相似文献   

6.
Experiments investigated a Pavlovian conditioning situation where the presence and absence of the stimulus are reversed temporally with respect to the presentation of a reward. Instead of a conditioned stimulus (e.g. odor) signaling the presence of a reward, the stimulus (e.g. odor) is present in the environment except just prior to the presence of the reward. Thus, the absence of the stimulus, or offset of the stimulus (e.g. absence of odor), serves as a conditioned stimulus and is the reward cue. Honey bees (Apis mellifera) were used as a model invertebrate system, and the proboscis‐conditioning paradigm was used as the test procedure. Using both simple Pavlovian conditioning and discrimination‐learning protocols, animals learned to associate the onset of an odor as conditioned stimuli when paired with a sucrose reward. They could also learn to associate the onset of a puff of air with a sucrose reward. However, bees could not associate the offset of an order stimulus with the presentation of a sucrose reward in either a simple conditioning or a discrimination‐learning situation. These results support the model that a very different cognitive architecture is used by invertebrates to deal with certain environmental situations, including signaled avoidance.  相似文献   

7.
The contextual and cued fear conditioning test is one of the behavioral tests that assesses the ability of mice to learn and remember an association between environmental cues and aversive experiences. In this test, mice are placed into a conditioning chamber and are given parings of a conditioned stimulus (an auditory cue) and an aversive unconditioned stimulus (an electric footshock). After a delay time, the mice are exposed to the same conditioning chamber and a differently shaped chamber with presentation of the auditory cue. Freezing behavior during the test is measured as an index of fear memory. To analyze the behavior automatically, we have developed a video analyzing system using the ImageFZ application software program, which is available as a free download at http://www.mouse-phenotype.org/. Here, to show the details of our protocol, we demonstrate our procedure for the contextual and cued fear conditioning test in C57BL/6J mice using the ImageFZ system. In addition, we validated our protocol and the video analyzing system performance by comparing freezing time measured by the ImageFZ system or a photobeam-based computer measurement system with that scored by a human observer. As shown in our representative results, the data obtained by ImageFZ were similar to those analyzed by a human observer, indicating that the behavioral analysis using the ImageFZ system is highly reliable. The present movie article provides detailed information regarding the test procedures and will promote understanding of the experimental situation.  相似文献   

8.
Lengthening the time interval between the conditioned stimulus and the unconditioned stimulus increases the number of active avoidance conditioned responses in subjects that have been trained to a stable level of performance in many previous conditioning sessions. In the present research, rats chosen from a population specially selected for low rates of avoidance conditioning have been used. In addition to this characteristic, subjects were chosen for the exhibition of an apparent absence of retention from one day to another. The dependency of the number of conditioned responses on the time interval between conditioned stimulus and unconditioned stimulus may lead to wrong evaluation of the subjects' conditioning level. In fact, the level of conditioning may be attributed to either learning or memory processes when in many cases it is determined only by the latency time of the conditioned response. The conditioned response has no possibility of manifesting itself when its latency time exceeds in length the time interval between conditioned stimulus and unconditioned stimulus.  相似文献   

9.
Classical conditioning of ventilatory responses in humans   总被引:2,自引:0,他引:2  
A classical conditioning experiment, in which an auditory stimulus was paired with a hypoxic stimulus, was carried out on 34 normal subjects assigned to two groups (experimental and control). Each subject took part in one session divided into two phases, acquisition and test. In the acquisition phase, eight hypoxic and eight auditory stimuli were paired in the experimental group and unpaired in the control group. In the test phase, which was identical for the two groups, the hypoxic stimuli were suppressed and three purely auditory stimuli were presented. Significant differences between the two groups in ventilatory response to these auditory stimuli provided evidence for conditioning. In the control group, no significant changes were elicited by the auditory stimuli, whereas a conditioned increase in total cycle duration was observed in the experimental group. The conditioned response closely resembled the first component of the hypoxic response. Analysis of the pattern of the conditioned response, along with postexperimental interviews, strongly suggests that this response was not mediated by volitional factors.  相似文献   

10.
The basolateral amygdala complex (BLA), including the lateral (LA), basal (BA) and accessory basal (AB) nuclei, is involved in acquisition of contextual and auditory fear conditioning. The BA is one of the main targets for hippocampal information, a brain structure critical for contextual learning, which integrates several discrete stimuli into a single configural representation. Congruent with the hodology, selective neurotoxic damage to the BA results in impairments in contextual, but not auditory, fear conditioning, similarly to the behavioral impairments found after hippocampal damage. This study evaluated the effects of muscimol-induced reversible inactivation of the BA during a simultaneous contextual and auditory fear conditioning training on later fear responses to both the context and the tone, tested separately, without muscimol administration. As compared to control rats micro-infused with vehicle, subjects micro-infused with muscimol before training exhibited, during testing without muscimol, significant reduction of freezing responses to the conditioned context, but not to the conditioned tone. Therefore, reversible inactivation of the BA during training impaired contextual, but not auditory fear conditioning, thus confirming and extending similar behavioral observations following selective neurotoxic damage to the BA and, in addition, revealing that this effect is not related to the lack of a functional BA during testing.  相似文献   

11.
12.
Social fear and avoidance of social situations represent the main behavioral symptoms of social anxiety disorder (SAD), a highly prevalent anxiety disorder that is poorly elucidated and has rather unsatisfactory therapeutic options. Therefore, animal models are needed to study the underlying etiology and pathophysiology of SAD and to verify the efficacy of possible novel treatment approaches. In this review, we describe and discuss the most important paradigms that have been shown to induce social avoidance and fear in rodents, including foot shock exposure, restraint stress, social isolation, social instability, social defeat, conditioned defeat, social defeat/overcrowding, chronic subordinate colony housing, chronic mild stress, maternal separation and social fear conditioning. We also describe some of the behavioral paradigms used to assess social avoidance and fear in rodents, including the social interaction test, the social preference-avoidance test, the social approach-avoidance test, the three-chambered social approach test, the partition test and the modified Y-maze test. We focus on the behavioral alterations these paradigms induce, especially on social interaction, general anxiety and depressive-like behavior given that SAD is strongly comorbid with anxiety and affective disorders.  相似文献   

13.
Adaptive anxiety relies on a balance between the generalization of fear acquisition and fear extinction. Research on fear (extinction) generalization has focused mostly on perceptual similarity, thereby ignoring the importance of conceptual stimulus relations in humans. The present study used a laboratory procedure to create de novo conceptual categories of arbitrary stimuli and investigated fear and extinction generalization among these stimuli. A matching-to-sample task produced two four-member categories of abstract figures. Next, a member from one category was coupled with an aversive electrical stimulation, while a member from the other category was presented alone. As expected, conditioned fear responses generalized to the other members of the first category (skin conductance and online shock-expectancy). Subsequent extinction of the conditioned member also generalized to the other members. However, extinguishing a non-conditioned member failed to reduce fear of the conditioned member itself. We conclude that fears generalize readily across conceptually related stimuli, but that the degree of extinction generalization depends on the stimulus subjected to extinction.  相似文献   

14.
The amygdala plays a central role in fear conditioning, a model of anticipatory anxiety. It has massive projections to brainstem regions involved in rapid eye movement sleep (REM) and ponto-geniculo-occipital (PGO) wave generation. PGO waves occur spontaneously in REM or in response to stimuli. Electrical stimulation of the central nucleus of the amygdala enhances spontaneous PGO wave activity during REM and the amplitude of both the acoustic startle response and the elicited PGO wave (PGOE), a neural marker of alerting. This study examined the effects of fear conditioning on REM and on PGOE. On conditioning days, the number of REM episodes, the average REM duration and the REM percentage were decreased while REM latency was increased. The presentation of auditory stimuli in the presence of a light conditioned stimulus produced PGOE of greater amplitudes. The results suggest that fear, most likely involving the amygdala, can influence REM and brainstem alerting mechanisms.  相似文献   

15.
Psychophysiological markers have been focused to investigate the psychopathology of psychiatric disorders and personality subtypes. In order to understand neurobiological mechanisms underlying these conditions, fear-conditioning model has been widely used. However, simple aversive stimuli are too simplistic to understand mechanisms because most patients with psychiatric disorders are affected by social stressors. The objective of this study was to test the feasibility of a newly-designed conditioning experiment using a stimulus to cause interpersonal conflicts and examine associations between personality traits and response to that stimulus. Twenty-nine healthy individuals underwent the fear conditioning and extinction experiments in response to three types of stimuli: a simple aversive sound, disgusting pictures, and pictures of an actors’ face with unpleasant verbal messages that were designed to cause interpersonal conflicts. Conditioned response was quantified by the skin conductance response (SCR). Correlations between the SCR changes, and personality traits measured by the Zanarini Rating Scale for Borderline Personality Disorder (ZAN-BPD) and Revised NEO Personality Inventory were explored. The interpersonal conflict stimulus resulted in successful conditioning, which was subsequently extinguished, in a similar manner as the other two stimuli. Moreover, a greater degree of conditioned response to the interpersonal conflict stimulus correlated with a higher ZAN-BPD total score. Fear conditioning and extinction can be successfully achieved, using interpersonal conflicts as a stimulus. Given that conditioned fear caused by the interpersonal conflicts is likely associated with borderline personality traits, this paradigm could contribute to further understanding of underlying mechanisms of interpersonal fear implicated in borderline personality disorder.  相似文献   

16.
Johansen JP  Cain CK  Ostroff LE  LeDoux JE 《Cell》2011,147(3):509-524
Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias.  相似文献   

17.
Intrusive memories – a hallmark symptom of posttraumatic stress disorder (PTSD) – are often triggered by stimuli possessing similarity with cues that predicted or accompanied the traumatic event. According to learning theories, intrusive memories can be seen as a conditioned response to trauma reminders. However, direct laboratory evidence for the link between fear conditionability and intrusive memories is missing. Furthermore, fear conditioning studies have predominantly relied on standardized aversive stimuli (e.g. electric stimulation) that bear little resemblance to typical traumatic events. To investigate the general relationship between fear conditionability and aversive memories, we tested 66 mentally healthy females in a novel conditioned-intrusion paradigm designed to model real-life traumatic experiences. The paradigm included a differential fear conditioning procedure with neutral sounds as conditioned stimuli and short violent film clips as unconditioned stimuli. Subsequent aversive memories were assessed through a memory triggering task (within 30 minutes, in the laboratory) and ambulatory assessment (involuntary aversive memories in the 2 days following the experiment). Skin conductance responses and subjective ratings demonstrated successful differential conditioning indicating that naturalistic aversive film stimuli can be used in a fear conditioning experiment. Furthermore, aversive memories were elicited in response to the conditioned stimuli during the memory triggering task and also occurred in the 2 days following the experiment. Importantly, participants who displayed higher conditionability showed more aversive memories during the memory triggering task and during ambulatory assessment. This suggests that fear conditioning constitutes an important source of persistent aversive memories. Implications for PTSD and its treatment are discussed.  相似文献   

18.
When amphetamine is associated with a tastant conditioned stimulus, rats learn to avoid the taste even when employing doses that promote conditioned place preference. One hypothesis raised to account for this effect proposes that taste avoidance induced by amphetamine may be motivated by fear. A sensitive period has been identified in the rat (until postnatal day 10) in which infants learn conditioned appetitive effects to stimuli to which aversions are conditioned after this period. Exogenous administration of corticosterone within this period reverses this effect, generating aversive conditioning. In the present study, we tested conditioning of aversions to amphetamine or LiCl, within and after the sensitive period (Experiments 1 and 2). A third experiment evaluated unconditioned rejection of an aversive quinine solution within the sensitive period. Finally, we tested whether corticosterone administration before conditioning modulates amphetamine-induced taste avoidance. After the sensitive period, infant rats rejected the solution paired with amphetamine or LiCl after 2 conditioning trials, but within the sensitive period, aversions were conditioned only by LiCl and after 4 conditioning trials. Amphetamine-induced taste avoidance was not observed even when corticosterone was administered before conditioning. Additionally, during the sensitive period, a low LiCl dose promoted conditioned taste preference. According to Experiment 3, parameters employed in this study were suitable to yield rejection of aversive solutions within the sensitive period. These results suggest that during the sensitive period, there is a notable resistance to the acquisition of taste avoidance induced by amphetamine. The present experimental framework may represent a useful tool for studying mechanisms underlying taste avoidance and aversion effects.  相似文献   

19.
The Emotional Brain, Fear, and the Amygdala   总被引:18,自引:0,他引:18  
1. Considerable progress has been made over the past 20 years in relating specific circuits of the brain to emotional functions. Much of this work has involved studies of Pavlovian or classical fear conditioning, a behavioral procedure that is used to couple meaningless environmental stimuli to emotional (defense) response networks.2. The major conclusion from studies of fear conditioning is that the amygdala plays critical role in linking external stimuli to defense responses.3. Before describing research on the role of the amygdala in fear conditioning, though, it will be helpful to briefly examine the historical events that preceded modern research on conditioned fear.  相似文献   

20.
The present study used an optical imaging paradigm to investigate plastic changes in the auditory cortex induced by fear conditioning, in which a sound (conditioned stimulus, CS) was paired with an electric foot-shock (unconditioned stimulus, US). We report that, after conditioning, auditory information could be retrieved on the basis of an electric foot-shock alone. Before conditioning, the auditory cortex showed no response to a foot-shock presented in the absence of sound. In contrast, after conditioning, the mere presentation of a foot-shock without any sound succeeded in eliciting activity in the auditory cortex. Additionally, the magnitude of the optical response in the auditory cortex correlated with variation in the electrocardiogram (correlation coefficient: −0.68). The area activated in the auditory cortex, in response to the electric foot-shock, statistically significantly had a larger cross-correlation value for tone response to the CS sound (12 kHz) compared to the non-CS sounds in normal conditioning group. These results suggest that integration of different sensory modalities in the auditory cortex was established by fear conditioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号