首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A recent analysis of brain size evolution reconstructed the plesiomorphic brain–body size allometry for the mammalian order Carnivora, providing an important reference frame for comparative analyses of encephalization (brain volume scaled to body mass). I performed phylogenetically corrected regressions to remove the effects of body mass, calculating correlations between residual values of encephalization with basal metabolic rate (BMR) and six life-history variables (gestation time, neonatal mass, weaning time, weaning mass, litter size, litters per year). No significant correlations were recovered between encephalization and any life-history variable or BMR, arguing against hypotheses relating encephalization to maternal energetic investment. However, after correcting for clade-specific adaptations, I recovered significant correlations for several variables, and further analysis revealed a conserved carnivoran reproductive strategy, linking degree of encephalization to the well-documented mammalian life-history trade-off between neonatal mass and litter size. This strategy of fewer, larger offspring correlating with increased encephalization remains intact even after independent changes in encephalization allometries in the evolutionary history of this clade.  相似文献   

2.
Cetaceans rival primates in brain size relative to body size and include species with the largest brains and biggest bodies to have ever evolved. Cetaceans are remarkably diverse, varying in both phenotypes by several orders of magnitude, with notable differences between the two extant suborders, Mysticeti and Odontoceti. We analyzed the evolutionary history of brain and body mass, and relative brain size measured by the encephalization quotient (EQ), using a data set of extinct and extant taxa to capture temporal variation in the mode and direction of evolution. Our results suggest that cetacean brain and body mass evolved under strong directional trends to increase through time, but decreases in EQ were widespread. Mysticetes have significantly lower EQs than odontocetes due to a shift in brain:body allometry following the divergence of the suborders, caused by rapid increases in body mass in Mysticeti and a period of body mass reduction in Odontoceti. The pattern in Cetacea contrasts with that in primates, which experienced strong trends to increase brain mass and relative brain size, but not body mass. We discuss what these analyses reveal about the convergent evolution of large brains, and highlight that until recently the most encephalized mammals were odontocetes, not primates.  相似文献   

3.
There is a well-established allometric relationship between brain and body mass in mammals. Deviation of relatively increased brain size from this pattern appears to coincide with enhanced cognitive abilities. To examine whether there is a phylogenetic structure to such episodes of changes in encephalization across mammals, we used phylogenetic techniques to analyse brain mass, body mass and encephalization quotient (EQ) among 630 extant mammalian species. Among all mammals, anthropoid primates and odontocete cetaceans have significantly greater variance in EQ, suggesting that evolutionary constraints that result in a strict correlation between brain and body mass have independently become relaxed. Moreover, ancestral state reconstructions of absolute brain mass, body mass and EQ revealed patterns of increase and decrease in EQ within anthropoid primates and cetaceans. We propose both neutral drift and selective factors may have played a role in the evolution of brain-body allometry.  相似文献   

4.
In birds and primates, the frequency of behavioural innovation has been shown to covary with absolute and relative brain size, leading to the suggestion that large brains allow animals to innovate, and/or that selection for innovativeness, together with social learning, may have driven brain enlargement. We examined the relationship between primate brain size and both technical (i.e. tool using) and non-technical innovation, deploying a combination of phylogenetically informed regression and exploratory causal graph analyses. Regression analyses revealed that absolute and relative brain size correlated positively with technical innovation, and exhibited consistently weaker, but still positive, relationships with non-technical innovation. These findings mirror similar results in birds. Our exploratory causal graph analyses suggested that technical innovation shares strong direct relationships with brain size, body size, social learning rate and social group size, whereas non-technical innovation did not exhibit a direct relationship with brain size. Nonetheless, non-technical innovation was linked to brain size indirectly via diet and life-history variables. Our findings support ‘technical intelligence’ hypotheses in linking technical innovation to encephalization in the restricted set of primate lineages where technical innovation has been reported. Our findings also provide support for a broad co-evolving complex of brain, behaviour, life-history, social and dietary variables, providing secondary support for social and ecological intelligence hypotheses. The ability to gain access to difficult-to-extract, but potentially nutrient-rich, resources through tool use may have conferred on some primates adaptive advantages, leading to selection for brain circuitry that underlies technical proficiency.  相似文献   

5.
Visual influences on primate encephalization   总被引:1,自引:0,他引:1  
Primates differ from most other mammals in having relatively large brains. As a result, numerous comparative studies have attempted to identify the selective variables influencing primate encephalization. However, none have examined the effect of the total amount of visual input on relative brain size. According to Jerison's principle of proper mass, functional areas of the brain devoted primarily to processing visual information should exhibit increases in size when the amount of visual input to those areas increases. As a result, the total amount of visual input to the brain could exert a large influence on encephalization because visual areas comprise a large proportion of total brain mass in primates. The goal of this analysis is to test the expectation of a direct relationship between visual input and encephalization using optic foramen size and optic nerve size as proxies for total visual input. Data were collected for a large comparative sample of primates and carnivorans, and three primary analyses were undertaken. First, the relationship between relative proxies for visual input and relative endocranial volume were examined using partial correlations and phylogenetic comparative methods. Second, to examine the generality of the results derived for extant primates, a parallel series of partial correlation and comparative analyses were undertaken using data for carnivorans. Third, data for various Eocene and Oligocene primates were compared with those for living primates in order to determine whether the fossil taxa demonstrate a similar relationship between relative brain size and visual input. All three analyses confirm the expectations of proper mass and favor the conclusion that the amount of visual input has been a major influence on the evolution of relative brain size in both primates and carnivorans. Furthermore, this study suggests that differences in visual input may partly explain (1) the high encephalization of primates relative to the primitive eutherian condition, (2) the high encephalization of extant anthropoids relative to other primates, and (3) the very low encephalization of Eocene adapiforms.  相似文献   

6.
A negative allometric relationship between body mass (BM) and brain size (BS) can be observed for many vertebrate groups. In the past decades, researchers have proposed several hypotheses to explain this finding, but none is definitive and some are possibly not mutually exclusive. Certain species diverge markedly (positively or negatively) from the mean of the ratio BM/BS expected for a particular taxonomic group. It is possible to define encephalization quotient (EQ) as the ratio between the actual BS and the expected brain size. Several cetacean species show higher EQs compared to all primates, except modern humans. The process that led to big brains in primates and cetaceans produced different trajectories, as shown by the organizational differences observed in every encephalic district (e.g., the cortex). However, these two groups both convergently developed complex cognitive abilities. The comparative study on the trajectories through which the encephalization process has independently evolved in primates and cetaceans allows a critical appraisal of the causes, the time and the mode of quantitative and qualitative development of the brain in our species and in the hominid evolutionary lineage.  相似文献   

7.
In order to understand fully the generally high level of encephalization observed in living primates, we must determine why early primates exhibited moderately large relative brain sizes compared to their early Tertiary contemporaries. The relatively high degree of encephalization in early primates may be related at least in part to the fact that they were highly unusualamong mammals in combining a small body size with a strongly precocial reporductive strategy. Other small, precocial mammals also exhibit moderately high levels of encephalization; but primates appear to have been truly uniquein being the only such small-sized and highly precocial group to give rise to extensive radiations of larger descendants. This is a key element in understanding primate brain evolution, because the initial “head start” of the early primates was translated up to larger sizes in descendants. The possible relationships among encephalization, precociality, small size, and arboreality are discussed, particularly in light of recent debates concerning the validity of the superorder Archonta. This work emphasizes that we need to consider relative brain size as but one element in a complex synergistic network of morphological and life-history features.  相似文献   

8.
The basicranium is the keystone of the primate skull, and understanding its morphological interdependence on surrounding soft-tissue structures, such as the brain, can reveal important mechanisms of skull development and evolution. In particular, several extensive investigations have shown that, across extant adult primates, the degree of basicranial flexion and petrous orientation are closely linked to increases in brain size relative to cranial base length. The aim of this study was to determine if an equivalent link exists during prenatal life. Specific hypotheses tested included the idea that increases in relative endocranial size (IRE5), relative infratentorial size (RIE), and differential encephalization (IDE) determine the degree of basicranial flexion and coronal petrous reorientation during non-hominoid primate fetal development. Cross-sectional fetal samples of Alouatta caraya (n=17) and Macaca nemestrina (n=24) were imaged using high-resolution magnetic resonance imaging (hrMRI). Cranial base angles (CBA), petrous orientations (IPA), base lengths, and endocranial volumes were measured from the images. Findings for both samples showed retroflexion, or flattening, of the cranial base and coronal petrous reorientation as well as considerable increases in absolute and relative brain sizes. Although significant correlations of both IRE5 and RIE were observed against CBA and IPA, the correlation with CBA was in the opposite direction to that predicted by the hypotheses. Variations of IDE were not significantly correlated with either angle. Correlations of IPA with IRE5 and RIE appeared to support the hypotheses. However, partial coefficients computed for all significant correlations indicated that changes to the fetal non-hominoid primate cranial base were more closely related to increases in body size than the hypothesized influence of relative brain enlargement. These findings were discussed together with those from a previous study of modern human fetuses.  相似文献   

9.
The high energetic costs of building and maintaining large brains are thought to constrain encephalization. The 'expensive-tissue hypothesis' (ETH) proposes that primates (especially humans) overcame this constraint through reduction of another metabolically expensive tissue, the gastrointestinal tract. Small guts characterize animals specializing on easily digestible diets. Thus, the hypothesis may be tested via the relationship between brain size and diet quality. Platyrrhine primates present an interesting test case, as they are more variably encephalized than other extant primate clades (excluding Hominoidea). We find a high degree of phylogenetic signal in the data for diet quality, endocranial volume and body size. Controlling for phylogenetic effects, we find no significant correlation between relative diet quality and relative endocranial volume. Thus, diet quality fails to account for differences in platyrrhine encephalization. One taxon, in particular, Brachyteles, violates predictions made by ETH in having a large brain and low-quality diet. Dietary reconstructions of stem platyrrhines further indicate that a relatively high-quality diet was probably in place prior to increases in encephalization. Therefore, it is unlikely that a shift in diet quality was a primary constraint release for encephalization in platyrrhines and, by extrapolation, humans.  相似文献   

10.
The brain is one of the most energetically expensive organs in the vertebrate body. Consequently, the energetic requirements of encephalization are suggested to impose considerable constraints on brain size evolution. Three main hypotheses concerning how energetic constraints might affect brain evolution predict covariation between brain investment and (1) investment into other costly tissues, (2) overall metabolic rate, and (3) reproductive investment. To date, these hypotheses have mainly been tested in homeothermic animals and the existing data are inconclusive. However, there are good reasons to believe that energetic limitations might play a role in large-scale patterns of brain size evolution also in ectothermic vertebrates. Here, we test these hypotheses in a group of ectothermic vertebrates, the Lake Tanganyika cichlid fishes. After controlling for the effect of shared ancestry and confounding ecological variables, we find a negative association between brain size and gut size. Furthermore, we find that the evolution of a larger brain is accompanied by increased reproductive investment into egg size and parental care. Our results indicate that the energetic costs of encephalization may be an important general factor involved in the evolution of brain size also in ectothermic vertebrates.  相似文献   

11.
Based on correlations between the cranial base angle (CBA) and the index of relative encephalization (IRE, calculated as the cubed root of brain volume divided by basicranial length), several recent studies have identified relative brain size as the factor most responsible for determining basicranial flexion in primates. IRE, however, scales with positive allometry relative to body mass, unlike the negatively allometric relationship between brain volume and body mass. This poses new questions concerning the factors underlying the correlation between IRE and CBA. Specifically, if basicranial flexion represents a spatial solution to the problem of housing a large brain within a neurocranium of limited size, then why is it that the problem is greatest in those species whose brains are smallest relative to body mass? To address this question, the scaling relationships of IRE and the measurements used to calculate it were examined in 87 primate species. It was found that the positive allometry of IRE is due to the fact that its denominator, basicranial length (BL), scales with very strong negative allometry relative to body mass. The scaling relationship of BL may reflect the fact that the noncortical components of the brain (i.e., diencephalon, mesencephalon, medulla) also scale with strong negative allometry relative to body mass, perhaps because of energetic constraints. Importantly, BL and these three brain components scale isometrically against each other. Thus, although cranial base flexion may be an adaptation to accommodate the size of the brain relative to basicranial length, the reason why that adaptation is necessary is not the evolution of a large brain, but rather the evolution of a short cranial base. In so far as basicranial length is affected by the strong negative allometry of the diencephalon, mesencephalon and medulla, the scaling relationships of these brain components are therefore indirectly responsible for the evolution of basicranial flexion.  相似文献   

12.
The evolutionary origin of Primates' exceptionally large brains is still highly debated. Two competing explanations have received much support: the ecological hypothesis and the social brain hypothesis (SBH). We tested the SBH in (n = 82) baboons (Papio anubis) belonging to the same research centre but housed in groups with size ranging from 2 to 63 individuals. We found that baboons living in larger social groups had larger brains. This effect was driven mainly by white matter volume and to a lesser extent by grey matter volume but not by the cerebrospinal fluid. In comparison, the size of the enclosure, an ecological variable, had no such effect. In contrast to the current re-emphasis on potential ecological drivers of primate brain evolution, the present study provides renewed support for the social brain hypothesis and suggests that the social brain plastically responds to group size. Many factors may well influence brain size, yet accumulating evidence suggests that the complexity of social life might be an important determinant of brain size in primates.  相似文献   

13.
There are several hypotheses suggesting that social complexity, including pair bonding, is important in the evolution of increased brain size. I examined whether genetic or social monogamy was related to large brain size in birds. Recent work has indicated that the length and strength of pair bonds are associated with large brain size. I tested several hypotheses for the evolution of large brain size in 42 species of bird by including life history variables in a regression model. A test on 100 phylogenetic trees revealed no phylogenetic signal in brain size. Controlling for body size, a principal components analysis was run on the life history variables and degrees of extra‐pair paternity. The main principal component (PC1) was regressed on brain size revealing a strong, positive association. Social, but not genetic, monogamy was positively related to brain size. Large brain size is related to the selective pressures of procuring extra‐pair copulations whilst maintaining a social partnership. However, other life history variables also loaded positively and significantly on brain size. These results indicate that the evolution of large brain size in birds was driven by several important selective pressures. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 668–678.  相似文献   

14.
The social brain hypothesis proposes that haplorhine primates have evolved relatively large brains for their body size primarily as an adaptation for living in complex social groups. Studies that support this hypothesis have shown a strong relationship between relative brain size and group size in these taxa. Recent reports suggest that this pattern is unique to haplorhine primates; many nonprimate taxa do not show a relationship between group size and relative brain size. Rather, pairbonded social monogamy appears to be a better predictor of a large relative brain size in many nonprimate taxa. It has been suggested that haplorhine primates may have expanded the pairbonded relationship beyond simple dyads towards the evolution of complex social groups. We examined the relationship between group size, pairbonding, and relative brain size in a sample of 19 lemurs; strepsirrhine primates that last share a common ancestor with monkeys and apes approximately 75 Ma. First, we evaluated the social brain hypothesis, which predicts that species with larger social groups will have relatively larger brains. Secondly, we tested the pairbonded hypothesis, which predicts that species with a pairbonded social organization will have relatively larger brains than non-pairbonded species. We found no relationship between group size or pairbonding and relative brain size in lemurs. We conducted two further analyses to test for possible relationships between two nonsocial variables, activity pattern and diet, and relative brain size. Both diet and activity pattern are significantly associated with relative brain size in our sample. Specifically, frugivorous species have relatively larger brains than folivorous species, and cathemeral species have relatively larger brains than diurnal, but not nocturnal species. These findings highlight meaningful differences between Malagasy strepsirrhines and haplorhines, and between Malagasy strepsirrhines and nonprimate taxa, regarding the social and ecological factors associated with increases in relative brain size. The results suggest that factors such as foraging complexity and flexibility of activity patterns may have driven selection for increases in brain size in lemurs.  相似文献   

15.
The evolutionary increase in relative brain size in mammals is shown to be correlated with an addition of neuronal elements to the cerebral cortex. From a theory of encephalization, based on these findings, it appears that the number of modules (or neurons) in the cerebral cortex associated with higher order brain functions at the same time depends upon the size of the animal. This supports the thesis that the two major components, which determine the volume of the brain, viz. a body size related component and a non-somatic evolutionary component, are inter-related.  相似文献   

16.
Conflicting theories have been proposed to explain variation in relative brain size across the animal kingdom. Ecological theories argue that the cognitive demands of seasonal or unpredictable environments have selected for increases in relative brain size, whereas the ‘social brain hypothesis’ argues that social complexity is the primary driver of brain size evolution. Here, we use a comparative approach to test the relative importance of ecology (diet, foraging niche and migration), sociality (social bond, cooperative breeding and territoriality) and developmental mode in shaping brain size across 1886 bird species. Across all birds, we find a highly significant effect of developmental mode and foraging niche on brain size, suggesting that developmental constraints and selection for complex motor skills whilst foraging generally imposes important selection on brain size in birds. We also find effects of social bonding and territoriality on brain size, but the direction of these effects do not support the social brain hypothesis. At the same time, we find extensive heterogeneity among major avian clades in the relative importance of different variables, implying that the significance of particular ecological and social factors for driving brain size evolution is often clade- and context-specific. Overall, our results reveal the important and complex ways in which ecological and social selection pressures and developmental constraints shape brain size evolution across birds.  相似文献   

17.
New World monkeys exhibit a more pronounced variability in encephalization than other primate taxa. In this comparative study, we tested two current hypotheses on brain size evolution, the Expensive Brain hypothesis and the Cognitive Buffer hypothesis, in a sample of 21 platyrrhine species. A high degree of habitat seasonality may impose an energetic constraint on brain size evolution if it leads to a high variation in caloric intake over time, as predicted by the Expensive Brain Hypothesis. However, simultaneously it may also provide the opportunity to reap the fitness benefits of increased cognitive abilities, which enable the exploitation of high‐quality food resources even during periods of scarcity, as predicted by the Cognitive Buffer hypothesis. By examining the effects of both habitat seasonality and the variation in monthly diet composition across species, we found support for both hypotheses, confirming previous results for catarrhine primates and lemurs. These findings are in accordance with an energetic and ecological view of brain size evolution. Am J Phys Anthropol 154:628–632, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Energy metabolism, brain size and longevity in mammals   总被引:5,自引:0,他引:5  
The mathematical relations between basal energy metabolism, brain size, and life span in mammals have been investigated. The evolutionary level of brain development, or encephalization (c), is a function both of brain weight (E) and of body weight (P) according to (formula; see text) Brain weight was found to be a linear function of the product of encephalization and basal metabolic rate. The oxygen consumption of the brain (Mbrain) is proportional to both encephalization and body weight according to (formula; see text) The ratio of metabolic rate in the cerebral cortex to that in the brain as a whole depends solely upon the degree of encephalization and is independent of the size of the animal. The maximum potential life span of a mammal was found to be proportional to the product of its degree of encephalization and the reciprocal of its metabolic rate per unit weight. Life span may be regarded as the algebraic sum of two components: (1) a deduced somatic component (Lb) inversely related to the basal metabolic rate per unit weight, and (2) an encephalization component (Le) related directly to the evolutionary increase of relative brain size.  相似文献   

19.
Large brains relative to body size represent an evolutionarily costly adaptation as they are metabolically expensive and demand substantial amounts of time to reach structural and functional maturity thereby exacerbating offspring mortality while delaying reproductive age. In spite of its cost and adaptive impact, no genomic features linked to brain evolution have been found. By conducting a genome-wide analysis in all 37 fully sequenced mammalian genomes, we show that encephalization is significantly correlated with overall protein amino acid composition. This correlation is not a by-product of changes in nucleotide content, lifespan, body size, absolute brain size or genome size; is independent of phylogenetic effects; and is not restricted to brain expressed genes. This is the first report of a relationship between this fundamental and complex trait and changes in protein AA usage, possibly reflecting the high selective demands imposed by the process of encephalization across mammalian lineages.  相似文献   

20.
Several hypotheses have been proposed to explain the limitation of brain size in vertebrates. Here, we test three hypotheses of brain size evolution using marine teleost fishes: the direct metabolic constraints hypothesis (DMCH), the expensive tissue hypothesis and the temperature‐dependent hypothesis. Our analyses indicate that there is a robust positive correlation between encephalization and basal metabolic rate (BMR) that spans the full range of depths occupied by teleosts from the epipelagic (< 200 m), mesopelagic (200–1000 m) and bathypelagic (> 4000 m). Our results disentangle the effects of temperature and metabolic rate on teleost brain size evolution, supporting the DMCH. Our results agree with previous findings that teleost brain size decreases with depth; however, we also recover a negative correlation between trophic level and encephalization within the mesopelagic zone, a result that runs counter to the expectations of the expensive tissue hypothesis. We hypothesize that mesopelagic fishes at lower trophic levels may be investing more in neural tissue related to the detection of small prey items in a low‐light environment. We recommend that comparative encephalization studies control for BMR in addition to controlling for body size and phylogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号