首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clinical studies and case reports clearly document that West Nile virus (WNV) can cause respiratory and gastrointestinal (GI) complications. Other functions controlled by the autonomic nervous system may also be directly affected by WNV, such as bladder and cardiac functions. To investigate how WNV can cause autonomic dysfunctions, we focused on the cardiac and GI dysfunctions of rodents infected with WNV. Infected hamsters had distension of the stomach and intestines at day 9 after viral challenge. GI motility was detected by a dye retention assay; phenol red dye was retained more in the stomachs of infected hamsters as compared to sham-infected hamsters. The amplitudes of electromygraphs (EMGs) of intestinal muscles were significantly reduced. Myenteric neurons that innervate the intestines, in addition to neurons in the brain stem, were identified to be infected with WNV. These data suggest that infected neurons controlling autonomic function were the cause of GI dysfunction in WNV-infected hamsters. Using radiotelemetry to record electrocardiograms and to measure heart rate variability (HRV), a well-accepted readout for autonomic function, we determined that HRV and autonomic function were suppressed in WNV-infected hamsters. Cardiac histopathology was observed at day 9 only in the right atrium, which was coincident with WNV staining. A subset of WNV infected cells was identified among cells with hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4) as a marker for cells in the sinoatrial (SA) and atrioventricular (AV) nodes. The unique contribution of this study is the discovery that WNV infection of hamsters can lead to autonomic dysfunction as determined by reduced HRV and reduced EMG amplitudes of the GI tract. These data may model autonomic dysfunction of the human West Nile neurological disease.  相似文献   

2.
Evidence indicates that West Nile virus (WNV) employs Ca2+ influx for its replication. Moreover, calcium buffer proteins, such as calbindin D28k (CB-D28k), may play an important role mitigating cellular destruction due to disease processes, and more specifically, in some neurological diseases. We addressed the hypothesis that CB-D28k inhibits WNV replication in cell culture and infected rodents. WNV envelope immunoreactivity (ir) was not readily co-localized with CB-D28k ir in WNV-infected Vero 76 or motor neuron-like NSC34 cells that were either stably or transiently transfected with plasmids coding for CB-D28k gene. This was confirmed in cultured cells fixed on glass coverslips and by flow cytometry. Moreover, WNV infectious titers were reduced in CB-D28k-transfected cells. As in cell culture studies, WNV env ir was not co-localized with CB-D28k ir in the cortex of an infected WNV hamster, or in the hippocampus of an infected mouse. Motor neurons in the spinal cord typically do not express CB-D28k and are susceptible to WNV infection. Yet, CB-D28k was detected in the surviving motor neurons after the initial phase of WNV infection in hamsters. These data suggested that induction of CB-D28k elicit a neuroprotective response to WNV infection.  相似文献   

3.
Engle MJ  Diamond MS 《Journal of virology》2003,77(24):12941-12949
West Nile virus (WNV) is a mosquito-borne Flavivirus that causes encephalitis in a subset of susceptible humans. Current treatment for WNV infections is supportive, and no specific therapy or vaccine is available. In this study, we directly tested the prophylactic and therapeutic efficacy of polyclonal antibodies against WNV. Passive administration of human gamma globulin or mouse serum prior to WNV infection protected congenic wild-type, B-cell-deficient ( micro MT), and T- and B-cell-deficient (RAG1) C57BL/6J mice. Notably, no increased mortality due to immune enhancement was observed. Although immune antibody completely prevented morbidity and mortality in wild-type mice, its effect was not durable in immunocompromised mice: many micro MT and RAG1 mice eventually succumbed to infection. Thus, antibody by itself did not completely eliminate viral reservoirs in host tissues, consistent with an intact cellular immune response being required for viral clearance. In therapeutic postexposure studies, human gamma globulin partially protected against WNV-induced mortality. In micro MT mice, therapy had to be initiated within 2 days of infection to gain a survival benefit, whereas in the wild-type mice, therapy even 5 days after infection reduced mortality. This time point is significant because between days 4 and 5, WNV was detected in the brains of infected mice. Thus, passive transfer of immune antibody improves clinical outcome even after WNV has disseminated into the central nervous system.  相似文献   

4.
Pathogenicity and Neurological Effects of Oidiodendron kalrai for Mice   总被引:1,自引:0,他引:1  
An experimental infection was induced in mice by intravenous and intraperitoneal inoculation with Oidiodendron kalrai. The infected mice developed a complex neurological syndrome consisting of hyperirritability, jumping, circling, and ataxia, followed by coma and death or by apparent recovery. Visible lesions accompanied by inflammatory reaction and fungal elements were seen only in kidneys, but organisms were also identified in and isolated from the liver, spleen, lungs, and brain. Cortisone alone or in combination with streptomycin rendered the mice highly susceptible to infection with O. kalrai, and lesions were found in the brains as well as in the kidneys of these mice. Treatment of infected mice with streptomycin alone increased the severity and duration of the neurological syndrome, but such treatment did not increase the mortality rate.  相似文献   

5.
Cell-free cytoplasmic extracts of the Syrian hamster cell lines C13/SV28 and BHK-21F were immunogenic in Syrian hamsters. The resulting antisera cross-reacted completely with antisera against lymphocytic choriomeningitis virus (LCMV) in an immunoradiometric assay employing BHK-21F antigen. Several other Syrian hamster cell lines not previously known to be infected with LCMV were also strongly positive when assayed for viral antigens. Also, several mouse sera and antisera raised in Syrian hamsters against cells transformed by papovaviruses had high titers of anti-LCMV activity. No cytopathic effect was evident in any of the persistently infected cell lines. Culture media from these cells were not infectious and showed no evidence of defective interfering particles. However, cell-free extracts of all the persistently infected cells contained material capable of transmitting the persistent infection to uninfected cells of Syrian hamsters, rats, mice, green monkeys, and humans. The onset of infection is much slower than when LCMV virions are used. When 2 X 10(6) uninfected BHK cells were treated with an extract from 100 persistently infected cells, the new infection was apparent within about 12 days. When an extract from 10(6) cells was used, the new infection was apparent within about 5 days, but not sooner. The intracellular infectious material was sensitive to treatment with deoxycholate, Nonidet P-40, or ether but resistant to treatment with RNase or trypsin. It was also large (5,000S) and heterodisperse on sucrose gradients. The infectious material was probably contained in large lipid vesicles and their integrity was probably essential for infection. When a few persistently infected cells were cocultivated with many uninfected cells, a few discrete colonies positive for LCMV antigens were observed after about 5 days. Since the culture media were not infectious, the infection probably spread by cell-cell contact. Several different experiments indicated that interferon did not play a major role in mediating persistence in this case. Persistent infections by LCMV can be maintained without expression of extracellular virus particles and without appearance of large amounts of viral antigens on the cell surface. Cell-cell contact could still allow transmission of intracellular infectious material. In an animal, these properties could circumvent immune surveillance.  相似文献   

6.
Infection with West Nile Virus (WNV) affects an increasing number of countries worldwide. Although most human infections result in no or mild flu-like symptoms, the elderly and those with a weakened immune system are at higher risk for developing severe neurological disease. Since its introduction into North America in 1999, WNV has spread across the continental United States and caused annual outbreaks with a total of 36,000 documented clinical cases and ∼1,500 deaths. In recent years, outbreaks of neuroinvasive disease also have been reported in Europe. The WNV strains isolated during these outbreaks differ from those in North America, as sequencing has revealed that distinct phylogenetic lineages of WNV concurrently circulate in Europe, which has potential implications for the development of vaccines, therapeutics, and diagnostic tests. Here, we studied the human antibody response to European WNV strains responsible for outbreaks in Italy and Greece in 2010, caused by lineage 1 and 2 strains, respectively. The WNV structural proteins were expressed as a series of overlapping fragments fused to a carrier-protein, and binding of IgG in sera from infected persons was analyzed. The results demonstrate that, although the humoral immune response to WNV in humans is heterogeneous, several dominant peptides are recognized.  相似文献   

7.
Although pneumonia virus of mice (PVM) is ubiquitous among rodent colonies in the United States, it has not been reported to cause clinically apparent disease in euthymic mice. However, PVM has been reported to cause respiratory disease and death in experimentally infected euthymic and athymic mice. A group of nu/nu mice, housed in quarantine in a Trexler-type isolator, had weight loss and dyspnea. Gross necropsy findings included cachexia and diffuse pulmonary edema or lobar consolidation. Histologically there was diffuse interstitial pneumonia. Electron microscopy revealed filamentous virions budding from plasma membranes, and immunohistochemical staining of lung tissue was positive for PVM antigen. PVM was isolated from affected lung tissue in BHK 21 cells and mouse antibody production tests resulted in seroconversion to PVM. Experimental inoculation of athymic mice with lung homogenate from spontaneously infected mice resulted in clinically apparent respiratory disease and histologic lung changes similar to those in naturally infected mice. Inoculation of athymic mice with infected BHK 21 cell culture fluid resulted in pneumonia which was qualitatively similar to, but less severe than, that observed in mice with spontaneous disease. These findings indicate that naturally occurring PVM infection in athymic mice may cause respiratory disease and wasting.  相似文献   

8.
Samuel MA  Diamond MS 《Journal of virology》2005,79(21):13350-13361
West Nile virus (WNV) is a mosquito-borne flavivirus that is neurotropic in humans, birds, and other animals. While adaptive immunity plays an important role in preventing WNV spread to the central nervous system (CNS), little is known about how alpha/beta interferon (IFN-alpha/beta) protects against peripheral and CNS infection. In this study, we examine the virulence and tropism of WNV in IFN-alpha/beta receptor-deficient (IFN- alpha/betaR-/-) mice and primary neuronal cultures. IFN-alpha/betaR-/- mice were acutely susceptible to WNV infection through subcutaneous inoculation, with 100% mortality and a mean time to death (MTD) of 4.6 +/- 0.7 and 3.8+/- 0.5 days after infection with 10(0) and 10(2) PFU, respectively. In contrast, congenic wild-type 129Sv/Ev mice infected with 10(2) PFU showed 62% mortality and a MTD of 11.9 +/- 1.9 days. IFN-alpha/betaR-/- mice developed high viral loads by day 3 after infection in nearly all tissues assayed, including many that were not infected in wild-type mice. IFN-alpha/betaR-/- mice also demonstrated altered cellular tropism, with increased infection in macrophages, B cells, and T cells in the spleen. Additionally, treatment of primary wild-type neurons in vitro with IFN-beta either before or after infection increased neuronal survival independent of its effect on WNV replication. Collectively, our data suggest that IFN-alpha/beta controls WNV infection by restricting tropism and viral burden and by preventing death of infected neurons.  相似文献   

9.
West Nile virus (WNV) is a neurotropic, arthropod-borne flavivirus that has become a significant global cause of viral encephalitis. To examine the mechanisms of WNV-induced neuronal death and the importance of apoptosis in pathogenesis, we evaluated the role of a key apoptotic regulator, caspase 3. WNV infection induced caspase 3 activation and apoptosis in the brains of wild-type mice. Notably, congenic caspase 3(-/-) mice were more resistant to lethal WNV infection, although there were no significant differences in the tissue viral burdens or the kinetics of viral spread. Instead, decreased neuronal death was observed in the cerebral cortices, brain stems, and cerebella of caspase 3(-/-) mice. Analogously, primary central nervous system (CNS)-derived neurons demonstrated caspase 3 activation and apoptosis after WNV infection, and treatment with caspase inhibitors or a genetic deficiency in caspase 3 significantly decreased virus-induced death. These studies establish that caspase 3-dependent apoptosis contributes to the pathogenesis of lethal WNV encephalitis and suggest possible novel therapeutic targets to restrict CNS injury.  相似文献   

10.
West Nile virus (WNV) is transmitted to vertebrate hosts primarily by infected Culex mosquitoes. Transmission of arboviruses by the bite of infected mosquitoes can potentiate infection in hosts compared to viral infection by needle inoculation. Here we examined the effect of mosquito transmission on WNV infection and systematically investigated multiple factors that differ between mosquito infection and needle inoculation of WNV. We found that mice infected with WNV through the bite of a single infected Culex tarsalis mosquito exhibited 5- to 10-fold-higher viremia and tissue titers at 24 and 48 h postinoculation and faster neuroinvasion than mice given a median mosquito-inoculated dose of WNV (10(5) PFU) by needle. Mosquito-induced enhancement was not due to differences in inoculation location, because additional intravenous inoculation of WNV did not enhance viremia or tissue titers. Inoculation of WNV into a location where uninfected mosquitoes had fed resulted in enhanced viremia and tissue titers in mice similar to those in mice infected by a single infected mosquito bite, suggesting that differences in where virus is deposited in the skin and in the virus particle itself were not responsible for the enhanced early infection in mosquito-infected mice. In addition, inoculation of mice with WNV mixed with salivary gland extract (SGE) led to higher viremia, demonstrating that mosquito saliva is the major cause of mosquito-induced enhancement. Enhanced viremia was not observed when SGE was inoculated at a distal site, suggesting that SGE enhances WNV replication by exerting a local effect. Furthermore, enhancement of WNV infection still occurred in mice with antibodies against mosquito saliva. In conclusion, saliva from C. tarsalis is responsible for enhancement of early WNV infection in vertebrate hosts.  相似文献   

11.
Injury to neurons after West Nile virus (WNV) infection is believed to occur because of viral and host immune-mediated effects. Previously, we demonstrated that CD8+ T cells are required for the resolution of WNV infection in the central nervous system (CNS). CD8+ T cells can control infection by producing antiviral cytokines (e.g., gamma interferon or tumor necrosis factor alpha) or by triggering death of infected cells through perforin- or Fas ligand-dependent pathways. Here, we directly evaluated the role of perforin in controlling infection of a lineage I New York isolate of WNV in mice. A genetic deficiency of perforin molecules resulted in higher viral burden in the CNS and increased mortality after WNV infection. In the few perforin-deficient mice that survived initial challenge, viral persistence was observed in the CNS for several weeks. CD8+ T cells required perforin to control WNV infection as adoptive transfer of WNV-primed wild-type but not perforin-deficient CD8+ T cells greatly reduced infection in the brain and spinal cord and enhanced survival of CD8-deficient mice. Analogous results were obtained when wild-type or perforin-deficient CD8+ T cells were added to congenic primary cortical neuron cultures. Taken together, our data suggest that despite the risk of immunopathogenesis, CD8+ T cells use a perforin-dependent mechanism to clear WNV from infected neurons.  相似文献   

12.
It has been reported that brain-infiltrating T lymphocytes play critical roles in the clearance of West Nile virus (WNV) from the brains of mice. We characterized brain-infiltrating T lymphocytes by analyzing the TCR α- and β-chain repertoires, T cell clonality, and CDR3 sequences. CD3(+)CD8(+) T cells were localized in the WNV-infected brains. The expression of CD3, CD8, CD25, CD69, perforin, and granzymes positively correlated with viral RNA levels, and high levels of expression of IFN-γ, TNF-α, and IL-2 were detected in the brains, suggesting that Th1-like cytotoxic CD8(+) T cells are expanded in the brains in response to WNV infection. The brain-infiltrating T lymphocytes dominantly used TCR genes, VA1-1, VA2-1, VB5-2, and VB8-2, and exhibited a highly oligoclonal TCR repertoire. Interestingly, the brain-infiltrating T lymphocytes had different patterns of TCR repertoire usages among WNV-, Japanese encephalitis virus-, and tick-borne encephalitis virus-infected mice. Moreover, CD8(+) T cells isolated from the brains of WNV-infected mice produced IFN-γ and TNF-α after in vitro stimulation with peritoneal cells infected with WNV, but not with Japanese encephalitis virus. The results suggest that the infiltrating CD8(+) T cells were WNV-specific, but not cross-reactive among flaviviruses. T cells from the WNV-infected brains exhibited identical or similar CDR3 sequences in TCRα among tested mice, but somewhat diverse sequences in TCRβ. The results indicate that WNV-specific CD3(+)CD8(+) T cells expanding in the infected brains are highly oligoclonal, and they suggest that TCR α-chains play a dominant and critical role in Ag specificity of WNV-specific T cells.  相似文献   

13.
Sindbis virus induces apoptotic cell death in cultured cell lines, raising the possibility that apoptosis of infected neurons and other target cells in vivo may contribute to the resulting disease and mortality. To investigate the role of apoptosis in Sindbis virus pathogenesis, infected mouse brains were assayed by the in situ terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling technique and for DNA ladder formation. Infection with recombinant Sindbis virus strain 633 resulted in widespread apoptosis in newborn mouse brains and spinal cords, but few apoptotic cells were observed following infection of 2-week-old animals. This finding correlates with the age-dependent mortality observed in mice. The more neurovirulent virus TE, which differs from 633 by a single amino acid in the E2 glycoprotein, induced significant apoptosis in brains and spinal cords of 2-week-old animals, consistent with its ability to cause fatal disease in older animals. Double-labeling experiments demonstrated that the apoptotic cells were also infected with Sindbis virus. Thus, Sindbis virus-induced apoptosis appears to be a result of virus infection and is likely to reflect pathogenic mechanisms for other viruses.  相似文献   

14.
Monkeypox virus (MPXV) is endemic within Africa where it sporadically is reported to cause outbreaks of human disease. In 2003, an outbreak of human MPXV occurred in the US after the importation of infected African rodents. Since the eradication of smallpox (caused by an orthopoxvirus (OPXV) related to MPXV) and cessation of routine smallpox vaccination (with the live OPXV vaccinia), there is an increasing population of people susceptible to OPXV diseases. Previous studies have shown that the prairie dog MPXV model is a functional animal model for the study of systemic human OPXV illness. Studies with this model have demonstrated that infected animals are able to transmit the virus to naive animals through multiple routes of exposure causing subsequent infection, but were not able to prove that infected animals could transmit the virus exclusively via the respiratory route. Herein we used the model system to evaluate the hypothesis that the Congo Basin clade of MPXV is more easily transmitted, via respiratory route, than the West African clade. Using a small number of test animals, we show that transmission of viruses from each of the MPXV clade was minimal via respiratory transmission. However, transmissibility of the Congo Basin clade was slightly greater than West African MXPV clade (16.7% and 0% respectively). Based on these findings, respiratory transmission appears to be less efficient than those of previous studies assessing contact as a mechanism of transmission within the prairie dog MPXV animal model.  相似文献   

15.
Malaria is a major cause of morbidity and mortality with an annual death toll exceeding one million. Severe malaria is a complex multisystem disorder, including one or more of the following complications: cerebral malaria, anemia, acidosis, jaundice, respiratory distress, renal insufficiency, coagulation anomalies, and hyperparasitemia. Using a combined in vivo/in vitro metabolic-based approach, we investigated the putative pathogenic effects of Plasmodium berghei ANKA on brain, in a mouse strain developing malaria but resistant to cerebral malaria. The purpose was to determine whether the infection could cause a brain dysfunction distinct from the classic cerebral syndrome. Mice resistant to cerebral malaria were infected with P. berghei ANKA and explored during both the symptomless and the severe stage of the disease by using in vivo brain magnetic resonance imaging and spectroscopy. The infected mice did not present the lesional and metabolic hallmarks of cerebral malaria. However, brain dysfunction caused by anemia, parasite burden, and hepatic damage was evidenced. We report an increase in cerebral blood flow, a process allowing temporary maintenance of oxygen supply to brain despite anemia. Besides, we document metabolic anomalies affecting choline-derived compounds, myo-inositol, glutamine, glycine, and alanine. The choline decrease appears related to parasite proliferation. Glutamine, myo-inositol, glycine, and alanine variations together indicate a hepatic encephalopathy, a finding in agreement with the liver damage detected in mice, which is also a feature of the human disease. These results reveal the vulnerability of brain to malaria infection at the severe stage of the disease even in the absence of cerebral malaria.  相似文献   

16.
Wang Y  Lobigs M  Lee E  Müllbacher A 《Journal of virology》2003,77(24):13323-13334
C57BL/6J mice infected intravenously with the Sarafend strain of West Nile virus (WNV) develop a characteristic central nervous system (CNS) disease, including an acute inflammatory reaction. Dose response studies indicate two distinct kinetics of mortality. At high doses of infection (10(8) PFU), direct infection of the brain occurred within 24 h, resulting in 100% mortality with a 6-day mean survival time (MST), and there was minimal destruction of neural tissue. A low dose (10(3) PFU) of infection resulted in 27% mortality (MST, 11 days), and virus could be detected in the CNS 7 days postinfection (p.i.). Virus was present in the hypogastric lymph nodes and spleens at days 4 to 7 p.i. Histology of the brains revealed neuronal degeneration and inflammation within leptomeninges and brain parenchyma. Inflammatory cell infiltration was detectable in brains from day 4 p.i. onward in the high-dose group and from day 7 p.i. in the low-dose group, with the severity of infiltration increasing over time. The cellular infiltrates in brain consisted predominantly of CD8(+), but not CD4(+), T cells. CD8(+) T cells in the brain and the spleen expressed the activation markers CD69 early and expressed CD25 at later time points. CD8(+) T-cell-deficient mice infected with 10(3) PFU of WNV showed increased mortalities but prolonged MST and early infection of the CNS compared to wild-type mice. Using high doses of virus in CD8-deficient mice leads to increased survival. These results provide evidence that CD8(+) T cells are involved in both recovery and immunopathology in WNV infection.  相似文献   

17.
In an attempt to find a small animal model for paragonimiasis, Syrian hamsters were infected with between 1 and 16 metacercariae of Paragonimus kellicotti. A definitive mortality dose-response was observed with 90% of all hamsters given 3 or more parasites succumbing to the infection within 35 days. Hamsters demonstrated acute pleuritis, reactive mesothelial hyperplasia, subpleural accumulations of reactive and mature plasma cells, neovascularization, fibrohistiocytic thickening with and without giant cells, raised fibroconnective tissue lesions, and granulomatous inflammation with hemorrhage. Perivascular plasmacytic (lymphocytic) infiltrate, multifocal bronchopneumonia, and parenchymal necrotizing suppurative granulomatous inflammation, hemorrhagic pneumonia, and diffuse sprinkling of eosinophils, neutrophils, and intraalveolar macrophages also were observed. The response observed here may represent a new small animal mortality model useful in the search for new compounds to treat early trematode infections.  相似文献   

18.
19.
The recently described virus-induced pneumonia in guineapigs (Naumann et al., 1981) was experimentally reproducible in newborn animals, though not in preadult animals. Baby hamsters and newborn rats were also not susceptible to infection. 10 of 11 infected newborn guineapigs developed pathological changes identical with those found in spontaneous cases. The incubation period was from 5 to 10 days. The agent could not be cultivated in vitro, and therefore no applicable serological tests could be established. The morphology of the virus, its intranuclear location, the course of the disease and the histopathological and ultrastructural changes strongly suggest that the virus is an adenovirus specific for guineapigs. The virus did not cross-react with human or fowl adenoviruses. It was ether resistant and non-oncogenic in baby rats and hamsters. During a 5-year period we registered a total of 51 spontaneous death cases diagnosed as adenovirus pneumonia in our experimental guineapigs, 4 from own breeding colony.  相似文献   

20.
Prediabetic Chinese hamsters were treated with antilymphocyte serum (ALS), or thymectomized in order to test the hypothesis that beta-cell loss leading to diabetes in this animal model was related to cell-mediated autoimmunity. In addition, passive transfer of diabetes from the Chinese hamster to the nude mouse was attempted by transplantation of lymphocytes. Treatment of prediabetic Chinese hamsters with ALS or thymectomy did not alter development or severity of diabetes in this animal model. Lymphocytes from newly diagnosed diabetic Chinese hamsters did not cause hyperglycemia in nude mice. These three lines of evidence suggest that cell-mediated autoimmunity does not contribute to the etiology of diabetes in the Chinese hamster. The Chinese hamster remains a good model for the study of those forms of diabetes not related to cell-mediated autoimmune phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号