首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Constitutive vascular endothelial growth factor (VEGF) gene expression systems have been extensively used to treat peripheral arterial diseases, but most of the results have not been satisfactory. In this study, we designed a plasmid vector with a hypoxia-responsive element sequence incorporated into it with the phiC31 integrative system (pVHAVI) to allow long-term VEGF gene expression and to be activated under hypoxia. Repeated activations of VEGF gene expression under hypoxia were confirmed in HEK293 and C2C12 cells transfected with pVHAVI. In limb ischemic mice, the local administration of pVHAVI promoted gastrocnemius mass and force recovery and ameliorated limb necrosis much better than the group treated with hypoxia-insensitive vector, even this last group had produced more VEGF in muscle. Histological analyses carried out after four weeks of gene therapy showed increased capillary density and matured vessels, and reduced number of necrotic cells and fibrosis in pVHAVI treated group. By our study, we demonstrate that the presence of high concentration of VEGF in ischemic tissue is not beneficial or is less beneficial than maintaining a lower but sufficient and long-term concentration of VEGF locally.  相似文献   

2.
目的:探讨超声介导微泡破裂法促进血管内皮生长因子(VEGF)基因在糖尿病鼠缺血骨骼肌内转染的作用,评估其转染效 率和安全性。方法:建立糖尿病鼠缺血骨骼肌动物模型,以绿色荧光蛋白基因为报告基因, 观察接受超声及微泡治疗组hVEGF165 基因在糖尿病鼠缺血骨骼肌内表达,并与对照组相比。同时取糖尿病鼠缺血骨骼肌进行HE染色行组织学检查。结果:在超声介导 微泡破裂组内,hVEGF165 基因表达明显增强(42.87± 5.12),与单纯接受质粒治疗组(5.02± 1.21)和接受质粒和超声治疗组(8.16± 2.43)相比,差异具有统计学意义(P<0.001),HE 切片未发现肌组织结构的改变。结论:超声介导微泡破裂法能有效促进外源基因 在糖尿病鼠缺血骨骼肌中表达, 为糖尿病周围血管疾病的基因治疗提供了实验依据。  相似文献   

3.
The objective of this study was to investigate the efficacy of combination gene therapy with multiple angiogenic growth factor cDNAs to enhance survival of ischemic skin flaps in a rat model. Sixty Sprague-Dawley rats were divided into six groups. Varying combinations of VEGF165, PDGF-B, and bFGF-plasmids were injected to prefabricate the flaps. Random skin flaps were raised on the dorsal aspect of rats following prefabrication with growth factor cDNAs. Flap viability was determined by measurement of percentage area of survival. The efficacy of gene therapy was evaluated by flap survival and neovascularization of representative histologic sections stained immunohistologically. The VEGF165 plus bFGF cDNAs enhanced the viability of the flap and neovascularization most effectively; the flap survival area was 64.3 +/- 8.7% after transfer of these two growth factor genes. Addition of PDGF-B cDNA is deleterious to the effects of combined VEGF165 and bFGF, leading to a significant decrease in flap viability (44.9 +/- 2.7%). Viability of the flaps with combined VEGF165 and bFGF cDNA transfer was significantly greater than that of the flaps with VEGF165 transfer alone (57.6 +/- 5.2%) or sham plasmid control (52.3 +/- 5.0%). Combined transfer of VEGF165 and bFGF cDNA is the most effective combination of multiple growth factor genes to improve flap viability in this model. Simultaneous transfer of three growth factor genes (VEGF165, PDGF-B, and bFGF) is deleterious to flap survival, at least for the ratio of lipofectin:transgene employed.  相似文献   

4.
Recombinant adeno-associated virus serotype 2 (rAAV2) vector has been widely employed for gene therapy. Recent progress suggests that the new serotypes of AAV showed a better performance than did AAV2 in normal tissues. Here, we evaluate the potential role of human vascular endothelial growth factor (VEGF) gene transfer using rAAV vector pseudotyped with serotype 1 capsid proteins (rAAV1) in the treatment of muscle ischemia. In ischemic skeletal muscles, the rAAV1-LacZ vector allowed higher level, broader distribution, and long-lasting gene expression compared with the rAAV2-LacZ vector. Muscle VEGF165 production following the rAAV1-VEGF165 vector injection was 5-10 times higher than that following the rAAV2-VEGF165 vector injection. VEGF165 production mediated by the rAAV1-VEGF165 vector stimulated a large set of neovascularization with relatively mature vascular structures and enhanced muscle regeneration in the ischemic skeletal muscles. Thus, the rAAV1-VEGF165 vector mediated gene transfer may be a therapeutic approach to peripheral vascular diseases.  相似文献   

5.
Shyu KG  Chang H  Isner JM 《Life sciences》2003,73(5):563-579
Vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang1) are essential for vascular integrity and development. The purpose of the study was to test the hypothesis that Ang1 will promote angiogenic response to VEGF in the spontaneous Watanabe heritable hypercholesterolemic (WHHL) rabbit model of acute hindlimb ischemia. Immediately after the ligation of the external iliac artery and the excision of the common and superficial femoral artery in one female WHHL rabbit, 250 microg of phVEGF(165) (n = 8), 500 microg of pAng1* (n = 8), or 250 microg of phVEGF(165) plus 500 microg of pAng1* (n = 8) was injected intramuscularly into the ischemic hindlimb muscles. Gross appearance of ischemic limb, collateral vessel formation and limb perfusion were assessed 30 days after treatment. The incidence of ischemic limb necrosis was higher in the animals treated by phVEGF(165) or by pAng1* than in those treated by phVEGF(165) plus pAng1* (100%, 75% and 14.3%, respectively; P = 0.002). Animals in the combination therapy group had a significantly higher calf blood pressure ratio at day 30 (VEGF plus Ang1* = 0.84 +/- 0.06; VEGF = 0.54 +/- 0.01; Ang1* = 0.59 +/- 0.05; P < 0.01). A combination therapy of VEGF plus Ang*1 had a significantly higher (P < 0.01) angiographic score than either therapy alone. Capillary density (P < 0.05) and capillary/muscle fiber ratio (P < 0.01) of the combination therapy group were also significantly higher than that of either therapy alone. In conclusion, Ang1 can potentiate the angiogenic response to VEGF in the hyperlipidemic rabbit model of acute hindlimb ischemia. Intramuscular administration of cytokines on revascularization of the ischemic hindlimb model of hyperlipidemic rabbit is feasible.  相似文献   

6.
Manipulation of angiogenesis in vivo is an example of successful gene therapy strategies. Overexpression of angiogenic genes like VEGF, FGF or PDGF causes new vessel formation and improves the clinical state of patients. Gene therapy is a very promising procedure but requires large amounts of pharmaceutical-grade plasmid DNA. In this regard we have constructed a bicistronic plasmid DNA vector encoding two proangiogenic factors, VEGF165 and FGF-2. The construct (pVIF) contains the internal ribosome entry site (IRES) of the encephalomyocarditis virus (ECMV) which permits both genes to be translated from a single bicistronic mRNA. The IRES sequence allows for a high efficiency of gene expression in vivo. The pVIF vector was characterized in vitro and in vivo. In vivo angiogenesis studies showed that the bicistronic vector encoding two proangiogenic factors induces the formation of new vessels significantly more than pVEGF165 or pFGF-2 alone. In our opinion the combined proangiogenic approach with VEGF165 and FGF-2 is more powerful and efficient than single gene therapy. We also postulate that IRES sequence can serve as a useful device improving efficiency of gene therapy.  相似文献   

7.
CEA-related cell adhesion molecule 1 (CEACAM1) exhibits angiogenic properties in in vitro and in vivo angiogenesis assays. CEACAM1 purified from granulocytes and endothelial cell media as well as recombinant CEACAM1 expressed in HEK293 cells stimulate proliferation, chemotaxis, and capillary-like tube formation of human microvascular endothelial cells. They increase vascularization of chick chorioallantoic membrane and potentiate the effects of vascular endothelial growth factor (VEGF)165. VEGF165 increases CEACAM1 expression both on the mRNA and the protein level. VEGF165-induced endothelial tube formation is blocked by a monoclonal CEACAM1 antibody. These data suggest that CEACAM1 is a major effector of VEGF in the early microvessel formation. Since CEACAM1 is expressed in tumor microvessels but not in large blood vessels, CEACAM1 may be a target for the inhibition of tumor angiogenesis.  相似文献   

8.
目的:将人血管内皮生长因子165(hVEGF165)导人原代离体成肌细胞,观察该细胞hVEGF分泌情况,探讨成人自体转基因成肌细胞移植的可行性。方法:采用两步消化法对成人骨骼肌组织消化获取相对较纯的成肌细胞,通过差速贴壁法进行进一步的纯化。以脂质体转染法将pcDNA3.1-hVEGF165导入成肌细胞,通过RT—PCR、ELISA和Western-blot进行hVEGF165定量检测,MTT测定和Mile’s实验检测VEGF165的生物学活性。结果:转基因细胞经RT—PCR扩增出一条VEGF的特异性泳带,ELISA显示转基因细胞培养上清VEGF浓度分别达到18.92±1.77rig/mL、19.04±2.15ng/mL,Western blot检测转基因成肌细胞上清均检测到VEGF蛋白特异性的杂交带,MTT显示转基因细胞上清明显促内皮细胞增殖,Mile’s实验显示转基因细胞上清明显增加毛细血管通透性。结论:质粒pcDNA3.1-hVEGF165能成功转入成人成肌细胞,转基因细胞能分泌有生物活性的VEGF165蛋白。  相似文献   

9.
Heparin has a potent angiogenic effect in experimental animals and patients with ischemic diseases; however, the precise mechanism behind this angiogenesis remains to be clarified. The aim of this study was to determine whether the administration of heparin affects the levels of heparin-binding angiogenic factors in human plasma, and to identify the molecule responsible for heparin-induced angiogenesis. Plasma levels of hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) were measured before and after administration of 100 U, 3,000 U or 10,000 U of heparin in patients with coronary artery disease. Administration of 3,000 U or 10,000 U of heparin caused significant increases in plasma HGF (40- and 54-fold, respectively), in absence of obvious increases in bFGF and VEGF levels. Furthermore, compared with the serum collected before heparin administration, the serum collected after heparin administration had more prominent growth-promoting and vascular tube-inducing properties on endothelial cells, and these increased activities were completely inhibited by neutralization of HGF, whereas neutralization of bFGF and VEGF had no effect. These findings suggest that HGF plays a significant role in heparin-induced angiogenesis.  相似文献   

10.
Ultraviolet B and genotoxic drugs induce the expression of a vascular endothelial growth factor A (VEGF-A) splice variant (VEGF111) encoded by exons 1–4 and 8 in many cultured cells. Although not detected in a series of normal human and mouse tissue, VEGF111 expression is induced in MCF-7 xenografts in nude mice upon treatment by camptothecin. The skipping of exons that contain proteolytic cleavage sites and extracellular matrix–binding domains makes VEGF111 diffusible and resistant to proteolysis. Recombinant VEGF111 activates VEGF receptor 2 (VEGF-R2) and extracellularly regulated kinase 1/2 in human umbilical vascular endothelial cells and porcine aortic endothelial cells expressing VEGF-R2. The mitogenic and chemotactic activity and VEGF111's ability to promote vascular network formation during embyonic stem cell differentiation are similar to those of VEGF121 and 165. Tumors in nude mice formed by HEK293 cells expressing VEGF111 develop a more widespread network of numerous small vessels in the peritumoral tissue than those expressing other isoforms. Its potent angiogenic activity and remarkable resistance to proteolysis makes VEGF111 a potential adverse factor during chemotherapy but a beneficial therapeutic tool for ischemic diseases.  相似文献   

11.
To construct an adenovirus vector co-expressing human bone morphogenetic protein (hBMP2) and human vascular endothelial growth factor (hVEGF165) as well as green fluorescence protein (GFP) as a marker, with which the intracellular expression of the inserted genes could be identified in Bone marrow mesenchymal stem cells (BM-MSCs). BMP2 and VEGF165 genes were PCR amplified from a cDNA library and inserted to the polyclonal site of adenovirus shuttle plasmid pAd-MCMV-GFP. The virus solution (Ad-BMP2-VEGF165) was generated by co-transfecting HEK293 cells with the constructed recombinant shuttle plasmid pAd-MCMV-BMP2-VEGF165 and adenovirus helper plasmid pBHGloxΔ (delta) E1, 3Cre. The virus solution was further purified and virus titer was determined accordingly. The expression of the target genes was subsequently detected and quantified in rabbit BM-MSCs by using real time PCR, ELISA and Western blotting. The recombinant adenovirus vector containing BMP2 and VEGF165 (Ad-BMP2-VEGF165) was successfully constructed, which was confirmed by Sanger sequencing, colony PCR, as well as visually detection of GFP, and the titer of the adenovirus was 1 × 1010 PFU/mL, and the proteins level of BMP2 and VEGF165 secreted in the supernatant are significantly higher than the control. Recombinant adenovirus vector containing hBMP2 and hVEGF165 genes was successfully constructed. The transfection rate of BM-MSCs by the adenovirus was high (95% at 100 MOI) and the BMP2 and VEGF165 genes was highly expressed in the cells. The present study provides a method to efficiently express the target genes in BM-MSCs and an vector for further research of bone defect repair using dual genes of BMP2 and VEGF165.  相似文献   

12.
Therapeutic myocardial angiogenesis with vascular endothelial growth factors   总被引:14,自引:0,他引:14  
Emerging evidence has shown that administration of angiogenic growth factors, either as recombinant protein or by gene transfer, can augment tissue perfusion through neovascularization in animal models of myocardial and hindlimb ischemia. Many cytokines have angiogenic activity; one of those that have been best studied in animal models and clinical trials is vascular endothelial growth factor (VEGF). VEGF has been known to be a key regulator of physiologic and pathologic angiogenesis associated with tumor. Recently the effect of VEGF is not restricted to the direct angiogenic effect in vivo but includes mobilization of bone-marrow-derived endothelial progenitor cells and augmentation of postnatal vasculogenesis in situ. Clinical trials of therapeutic angiogenesis with VEGF in patients with end-stage coronary artery disease have shown increases in exercise time and reductions in anginal symptoms and have provided objective evidence of improved perfusion and left ventricular function. Larger scale placebo-controlled trials with recombinant protein (rhVEGF165) have been limited to intracoronary and intravenous administration and have shown favorable trends in exercise time and angina frequency. Small-scale, placebo-controlled, randomized clinical trials of gene transfer (phVEGF-2) via thoracotomy or percutaneous intramyocardial delivery demonstrated significant improvement of both subjective symptoms and objective measures of myocardial ischemia. Both therapeutic modalities appear to be safe and well tolerated. Further studies are required to determine the optimal dose, formulation, route of administration, and combinations of growth factors and the utility of adjunctive endothelial progenitor cell or other stem cell supplementation, to provide safe and effective therapeutic myocardial neovascularization.  相似文献   

13.
Retinal neovascularization (NV) occurs in various ocular disorders including proliferative diabetic retinopathy, retinopathy of prematurity and secondary neovascular glaucoma, which often result in blindness. Vascular endothelial growth factor (VEGF) is an essential growth factor for angiogenesis, and is particularly regulated by hypoxia inducible factor-1alpha (HIF-1alpha) under hypoxic conditions. Therefore, HIF-1alpha and VEGF could provide targets for therapeutic intervention on retinal NV. In this study, we investigated the inhibitory effects of small interfering RNA (siRNA) targeting HIF-1alpha and VEGF on the expression of HIF-1alpha and VEGF in human umbilical vein endothelial cells (HUVEC) in vitro and on retinal NV in vivo. siRNA-expressing plasmids targeting human HIF-1alpha (HIF-1alpha siRNA) and human VEGF(165) (VEGF siRNA) were constructed. They were transfected and co-transfected to HUVEC and C57BL/6J mice of ischemic retinopathy model. HIF-1alpha siRNA and VEGF siRNA specifically downregulated HIF-1alpha and VEGF at both mRNA and protein levels in vitro and in vivo. Neovascular tufts and neovascular nuclei were decreased in gene therapy group compared to control hypoxia group. Co-transfection of HIF-1alpha siRNA and VEGF siRNA resulted in maximal effects on VEGF suppression in vitro and in vivo. It also manifested the maximal inhibitory effect on retinal NV. These results indicate that the application of HIF-1alpha siRNA and VEGF siRNA technology holds great potential as a novel therapeutic for retinal NV.  相似文献   

14.
TNF-alpha impairs endothelial cell growth and angiogenesis. The anti-angiogenic effects of TNF-alpha have mainly been explained by its modulating vascular endothelial growth factor (VEGF)-specific angiogenic pathway. Hepatocyte growth factor (HGF) also promotes the growth of vascular endothelial cells and the development of new blood vessels through interaction with its specific receptor, c-met. However, it is little known whether TNF-alpha interacts with the HGF system or not. In this study, we examined the effect of TNF-alpha on HGF receptor function. In human umbilical venous endothelial cells (HUVEC), TNF-alpha acutely inhibited the phosphorylation and activation of c-met induced by HGF. The ability of TNF-alpha to inhibit HGF-induced c-met activity was impaired by sodium orthovanadate, suggesting that the inhibitory effect of TNF-alpha was mediated by a protein-tyrosine phosphatase. Treatment of HUVEC with TNF-alpha impairs the ability of HGF to activate MAPK and Akt, and this effect was blocked by SOV. HGF-induced c-met responses specifically associated with endothelial cell proliferation and mitogen-activated protein kinase activation were also inhibited by TNF-alpha, and these were reversed by sodium orthovanadate. HGF-induced SHP-1 (a cytoplasmic protein-tyrosine phosphatase) and pretreatment of HUVEC with TNF-alpha prior to HGF treatment resulted in substantial increase in the amount of SHP-1. These data suggest that TNF-alpha employs a protein-tyrosine phosphatase and may exert its anti-angiogenic function in part by modulating the HGF-specific angiogenic pathway in pathological settings.  相似文献   

15.
Increasing evidence points to a central link between inflammation and activation of the stroma, especially of fibroblasts therein. However, the mechanisms leading to such activation mostly remain undescribed. We have previously characterized a novel type of fibroblast activation (nemosis) where clustered fibroblasts upregulated the production of cyclooxygenase-2, secretion of prostaglandins, proteinases, chemotactic cytokines, and hepatocyte growth factor (HGF), and displayed activated nuclear factor-κB. Now we show that nemosis drives angiogenic responses of endothelial cells. In addition to HGF, nemotic fibroblasts secreted vascular endothelial growth factor (VEGF), and conditioned medium from spheroids promoted sprouting and networking of human umbilical venous endothelial cells (HUVEC). The response was partly inhibited by function-blocking antibodies against HGF and VEGF. Conditioned nemotic fibroblast medium promoted closure of HUVEC and human dermal microvascular endothelial cell monolayer wounds, by increasing the motility of the endothelial cells. Wound closure in HUVEC cells was partly inhibited by the antibodies against HGF. The stromal microenvironment regulates wound healing responses and often promotes tumorigenesis. Nemosis offers clues to the activation process of stromal fibroblasts and provides a model to study the part they play in angiogenesis-related conditions, as well as possibilities for therapeutical approaches desiring angiogenesis in tissue.  相似文献   

16.
Summary Both cell therapy and angiogenic growth factor gene therapy have been applied to animal studies and clinical trials. Little is known about the direct comparison between cell therapy and angiogenic growth factor gene therapy. The goal of this study was to compare the effects of human bone marrow-derived mesenchymal stem cells (hMSCs) transplantation and injection of angiogenic growth factor genes in a model of acute myocardial infarction in mice. The hMSCs were obtained from adult human bone marrow and expanded in vitro. The purity and characteristics of hMSCs were identified by flow cytometry and immunophenotyping. Immediately after ligation of the left anterior descending coronary artery in male severe combined immunodeficient (SCID) mice, culture-expanded hMSCs or angiogenic growth factor genes were injected intramuscularly at the left anterior free wall. The engrafted hMSCs were positive for cardiac marker, desmin. Infarct size was significantly smaller in the hMSCs-treated group than in the angiopoietin-1 (Ang-1) or vascular endothelial growth factor (VEGF)-treated group at day 28 after infarction. hMSCs transplantation was better in decreasing left ventricular end-diastolic dimension and increasing fractional shortening than Ang1 or VEGF gene therapy. Capillary density was markedly increased after hMSCs transplantation than Ang1 and VEGF gene therapy. In conclusion, intramyocardial transplantation of hMSCs improves cardiac function after acute myocardial infarction through enhancement of angiogenesis and myogenesis in the ischemic myocardium. hMSCs are superior to angiogenic growth factor genes for improving myocardial performance in the mouse model of acute myocardial infarction. Transplantation of MSCs may become the future therapy for acute myocardial infarction for myocardial regeneration.  相似文献   

17.
Differential display polymerase chain reaction has been used to isolate genes regulated in vascular endothelial cells by the angiogenic factor vascular endothelial cell growth factor (VEGF). Analysis of one of the bands consistently up-regulated by VEGF led us to the identification of a cDNA from a human umbilical vein endothelial cell library that is 77% identical to the human K+-Cl- cotransporter1 (KCC1). We have referred to the predicted protein as K+-Cl- cotransporter 3 (KCC3). Hydrophobicity analysis of the KCC3 amino acid sequence showed an almost identical pattern to KCC1, suggesting 12 membrane-spanning segments, a large extracellular loop with potential N-glycosylation sites, and cytoplasmic N- and C-terminal regions. The KCC3 mRNA was highly expressed in brain, heart, skeletal muscle, and kidney, showing a distinct pattern and size from KCC1 and KCC2. The KCC3 mRNA level in endothelial cells increased on treatment with VEGF and decreased with the proinflammatory cytokine tumor necrosis factor alpha, whereas KCC1 mRNA levels remained unchanged. Stable overexpression of KCC3 cDNA in HEK293 cells produced a glycoprotein of approximately 150 kDa, which was reduced to 120 kDa by glycosidase digestion. An increased initial uptake rate of 86Rb was seen in clones with high KCC3 expression, which was dependent on extracellular Cl- but not Na+ and was inhibitable by the loop diuretic agent furosemide. The KCC3 genomic localization was shown to be 15q13 by fluorescence in situ hybridization. Radiation hybrid analysis placed KCC3 within an area associated with juvenile myoclonic epilepsy. These results suggest KCC3 is a new member of the KCC family that is under distinct regulation from KCC1.  相似文献   

18.
An experimental study was conducted to investigate the potential use of intravascular gene therapy with adenovirus-mediated (Ad) vascular endothelial growth factor (VEGF) or angiopoietin-1 (Ang-1) for the enhancement of muscle flap perfusion and to evaluate the effect of therapy on microcirculatory hemodynamics and microvascular permeability in vivo by using a cremaster muscle flap model in the rat. The cremaster tube flap was left intact after isolation of the pudo-epigastric pedicle. A total of 90 male Sprague-Dawley rats were divided into five groups of 18 each, according to the type of intraarterial treatment. Control flaps received phosphate-buffered saline. Group 2 (the control gene encoding green fluorescent protein, Ad-GFP) served as the adenovirus control. In Groups 3, 4, and 5, flaps were pretreated with Ad-VEGF, Ad-Ang-1, and Ad-Ang-1 + Ad-VEGF, respectively. Flaps were preserved in a subcutaneous pocket in the hindlimb for evaluation of functional capillary density and microvascular permeability indices at 3, 7, and 14 days by intravital microscopy system. At day 7 and 14, Ad-VEGF, Ad-Ang-1, and combined treatment groups showed significantly higher numbers of capillary densities when compared with control and Ad-GFP groups (p < 0.05). At day 14, Ad-VEGF was the superior treatment group compared with Ad-Ang-1 and Ad-VEGF + Ad-Ang-1 (p < 0.05). Overall, there was a linear increase in the number of functional capillaries in all treatment groups (p < 0.05). At day 3 after Ad-Ang-1 therapy, a significantly lower permeability index was found when compared with Ad-VEGF + Ad-Ang-1 and Ad-VEGF alone treatment (p < 0.05). At day 7, the Ad-VEGF group had the highest score of permeability index compared with control, combined, and Ad-Ang-1 groups (p < 0.05). Histologic evaluation of muscle flaps demonstrated mild focal inflammation. There was evidence of mild vasculitis in all flaps except control muscles. Intravascular angiogenic therapy with Ad-VEGF or Ad-Ang-1 was technically feasible, as demonstrated by expression of the control gene, GFP, along the vascular tree. All treatment groups increased perfusion of the muscle flap over a period of 14 days, indicating a long-lasting effect of gene therapy. Ang-1 alone or in combination with VEGF was as effective as VEGF alone in augmenting muscle perfusion with more stable vessels 1 week after gene therapy.  相似文献   

19.
The therapeutic use of angiogenic factors to protect ischemic myocardium is limited by our incomplete understanding of their endogenous production. We determined the association between angiogenic factors and collateral formation in patients with coronary artery disease (CAD). A total of 71 patients underwent catheterization with sampling of the pulmonary artery, aorta, and coronary sinus (CS) to determine the levels of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF). VEGF and HGF levels were not different in the three vascular sites, suggesting that the heart is not a major source of these cytokines in the circulation. CS VEGF and HGF levels were similar in patients with and without CAD. Elevated CS HGF levels were associated with collateral formation, whereas VEGF levels were not. Additionally, CS HGF was significantly elevated in patients with left ventricular dysfunction. These data map for the first time the concentration of endogenous angiogenic factors in the coronary circulation and support further studies to determine whether HGF may be an endogenous cardioprotective angiogenic factor.  相似文献   

20.
Emerging evidence has shown that administration of angiogenic growth factors, either as recombinant protein or by gene transfer, can augment tissue perfusion through neovascularization in animal models of myocardial and hindlimb ischemia. Many cytokines have angiogenic activity; one of those that have been best studied in animal models and clinical trials is vascular endothelial growth factor (VEGF). VEGF has been known to be a key regulator of physiologic and pathologic angiogenesis associated with tumor. Recently the effect of VEGF is not restricted to the direct angiogenic effect in vivo but includes mobilization of bone-marrow-derived endothelial progenitor cells and augmentation of postnatal vasculogenesis in situ. Clinical trials of therapeutic angiogenesis with VEGF in patients with end-stage coronary artery disease have shown increases in exercise time and reductions in anginal symptoms and have provided objective evidence of improved perfusion and left ventricular function. Larger scale placebo-controlled trials with recombinant protein (rhVEGF165) have been limited to intracoronary and intravenous administration and have shown favorable trends in exercise time and angina frequency. Small-scale, placebo-controlled, randomized clinical trials of gene transfer (phVEGF-2) via thoracotomy or percutaneous intramyocardial delivery demonstrated significant improvement of both subjective symptoms and objective measures of myocardial ischemia. Both therapeutic modalities appear to be safe and well tolerated. Further studies are required to determine the optimal dose, formulation, route of administration, and combinations of growth factors and the utility of adjunctive endothelial progenitor cell or other stem cell supplementation, to provide safe and effective therapeutic myocardial neovascularization. (Mol Cell Biochem 264: 63–74, 2004)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号