首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A common feature of demyelinating diseases such as multiple sclerosis in humans and experimental autoimmune encephalomyelitis in rodents is the marked elevation in the expression of the major histocompatibility complex (MHC) antigens in the involved sites. By specific targeting of a syngeneic MHC class I gene to oligodendrocytes, we have generated transgenic mice which not only exhibit severe involuntary tremors and develop tonic seizures but also show extensive demyelination in both the brain and the spinal cord. The fact that demyelination in these mice occurs in the absence of immune infiltration dismisses an autoimmune involvement but suggests that the MHC class I antigens play a direct role in inducing disease. Our findings lend support to the possibility that demyelinating diseases are induced by infectious agents such as viruses which can either directly activate MHC gene expression in oligodendroglia or indirectly activate expression through the release by reactive T cells of gamma interferon in the brain.  相似文献   

2.
David Wallis 《Life sciences》1981,29(23):2345-2355
5-HT receptors are present on many types of neurone in the peripheral nervous system (PNS), e.g. sympathetic, parasympathetic, enteric and sensory cells, and mediate complex effects. These include depolarization, cell discharge and facilitation or depression of transmission. If 5-HT receptors can be classified according to the membrane mechanism associated with them, following the system adopted for mollusc neurones, such a classification would have to take into account two kinds of presynaptic and at least four kinds of postsynaptic action. Recent work suggests that a small number of analogues of 5-HT (tryptamine, 5-MOT, LSD) and antagonists (cocaine, methysergide, quipazine) may be useful in differentiating the various kinds of 5-HT receptor in the PNS. It is suggested that no single feature should be relied upon to characterize the receptors; classification might be based on consideration of function, evidence of tachyphylaxis, sensitivity to methysergide, cocaine, etc. On this basis, it is tentatively concluded that there are two kinds of 5-HT receptor mediating excitation in the PNS, neither of which can sensibly be termed an ‘M’ receptor. An interim form of terminology is proposed which makes use of an acronym of the distinctive features. A receptor mediating (E)xcitation, which shows (T)achyphylaxis, is (M)ethysergide (I)nsensitive but is blocked by (C)ocaine might be designated a 5-HTETMIC receptor, while a second which differs because it is insensitive to cocaine but activated by (F)ive-methoxytryptamine might be designated a 5-HTETMIF receptor. Amongst receptors mediating (I)nhibition, the best characterized is one mediating decreased transmitter release and activated by (L)SD. The term 5-HTIL receptor is proposed. A second, post-synaptic inhibitory receptor is likely, but has not been adequately characterized at present.  相似文献   

3.
Frontotemporal dementias (FTDs), including corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP), are neurodegenerative tauopathies characterized by widespread CNS neuronal and glial tau pathologies, but there are no tau transgenic (Tg) mice that model neurodegeneration with glia tau lesions. Thus, we generated Tg mice overexpressing human tau in neurons and glia. No neuronal tau aggregates were detected, but old mice developed Thioflavin S- and Gallyas-positive glial tau pathology resembling CBD astrocytic plaques. Tau-immunoreactive and Gallyas-positive oligodendroglial coiled bodies (similar to CBD and PSP), glial degeneration, and motor deficits were associated with age-dependent accumulations of insoluble hyperphosphorylated human tau and tau immunopositive filaments in degenerating glial cells. Thus, tau-positive glial lesions similar to human FTDs occur in these Tg mice, and these pathologies are linked to glial and axonal degeneration.  相似文献   

4.
One hallmark of Alzheimer disease is the accumulation of amyloid beta-peptide in the brain and its deposition as plaques. Mice transgenic for an amyloid beta precursor protein (APP) mini-gene driven by a platelet-derived (PD) growth factor promoter (PDAPP mice), which overexpress one of the disease-linked mutant forms of the human amyloid precursor protein, show many of the pathological features of Alzheimer disease, including extensive deposition of extracellular amyloid plaques, astrocytosis and neuritic dystrophy. Active immunization of PDAPP mice with human amyloid beta-peptide reduces plaque burden and its associated pathologies. Several hypotheses have been proposed regarding the mechanism of this response. Here we report that peripheral administration of antibodies against amyloid beta-peptide, was sufficient to reduce amyloid burden. Despite their relatively modest serum levels, the passively administered antibodies were able to enter the central nervous system, decorate plaques and induce clearance of preexisting amyloid. When examined in an ex vivo assay with sections of PDAPP or Alzheimer disease brain tissue, antibodies against amyloid beta-peptide triggered microglial cells to clear plaques through Fc receptor-mediated phagocytosis and subsequent peptide degradation. These results indicate that antibodies can cross the blood-brain barrier to act directly in the central nervous system and should be considered as a therapeutic approach for the treatment of Alzheimer disease and other neurological disorders.  相似文献   

5.
Neurons are highly specialized postmitotic cells that depend on dynamic cellular processes for their proper function.These include among others, neuronal growth and maturation, axonal migration, synapse formation and elimination, all requiring continuous protein synthesis and degradation. Therefore quality-control processes in neurons are directly linked to their physiology. Autophagy is a tightly regulated cellular degradation pathway by which defective or superfluouscytosolic proteins, organelles and other cellular constituents are sequestered in autophagosomes and delivered to lysosomes for degradation. Here we present emerging evidence indicating that constitutive autophagic fluxin neurons has essential roles in key neuronal processes under physiological conditions.Moreover, we discuss how perturbations of the autophagic pathway may underlie diverse pathological phenotypes in neurons associated with neurodevelopmental and neurodegenerative diseases.  相似文献   

6.
7.
In the central nervous system (CNS), neurons need synaptic neurotransmitter release and cellular response for various cellular stress or environmental stimuli. To achieve these highly orchestrated cellular processes, neurons should drive the molecular mechanisms that govern and integrate complex signaling pathways. The signal transduction ATPases with numerous domains (STAND) family of proteins has been shown to play essential roles in diverse signal transduction mechanisms, including apoptosis and innate immunity. However, a comprehensive understanding of STAND genes remains lacking. Previously, we identified the NACHT and WD repeat domain-containing protein 1 (NWD1), a member of STAND family, in the regulation of the assembly of a giant multi-enzyme complex that enables efficient de novo purine biosynthesis during brain development. Here we identified the mouse Nwd2 gene, which is a paralog of Nwd1. A molecular phylogenetic analysis suggested that Nwd1 emerged during the early evolution of the animal kingdom, and that Nwd2 diverged in the process of Nwd1 duplication. RT-PCR and in situ hybridization analyses revealed the unique expression profile of Nwd2 in the developing and adult CNS. Unlike Nwd1, Nwd2 expression was primarily confined to neurons in the medial habenular nucleus, an essential modulating center for diverse psychological states, such as fear, anxiety, and drug addiction. In the adult brain, Nwd2 expression, albeit at a lower level, was also observed in some neuronal populations in the piriform cortex, hippocampus, and substantia nigra pars compacta. NWD2 might play a unique role in the signal transduction required for specific neuronal circuits, especially for cholinergic neurons in the habenula.  相似文献   

8.
Identification of new central nervous system specific mouse microRNAs   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are small regulatory molecules suppressing mRNA activity in metazoans. Here we describe two new miRNAs cloned from brain tissue of mouse embryos. These miRNAs are expressed mainly during embryogenesis and specifically in the central nervous system. We also established the expression patterns of three recently identified miRNAs that were found in our short RNA library. All of them were expressed in the brain and spinal chord but while miR-410 and miR-431 were central nervous system specific, miR-500 was also expressed in limb buds. In addition, the expression of miR-500 in limb buds showed very strong asymmetry in favour of the left hand side.  相似文献   

9.
Frizzled transmembrane proteins (Fzd) are receptors of Wnts, and they play key roles during central nervous system (CNS) development in vertebrates. Here we report the expression pattern of Frizzled10 in mouse CNS from embryonic stages to adulthood. Frizzled10 is expressed strongly at embryonic days E8.5 and E9.5 in the neural tube and tail bud. At E10.5, Frizzled10 is expressed in the forebrain vesicle, the fourth ventricle and the dorsal spinal cord. From E12.5 to E16.5, Frizzled10 expression is mainly observed in the cortical hem/fimbria, the neuroepithelium of the third ventricular zone, midbrain, developing cerebellum, and dorsal spinal cord. At P0, with the exception of expression in the fimbria, Frizzled10 mRNA expression is limited to specific nuclei including the ventral posterior thalamic nucleus (VP) and the dorsal lateral geniculate nucleus (DLG) in the developing thalamus as well as in the proliferative ventricular zone of the developing cerebellum. From P20 to adult, Frizzled10 mRNA is detected only in the internal capsule (ic). Our data show that expression of Frizzled10 is very strong during embryonic development of the CNS and suggest that Frizzled10 may play an essential role in spatial and temporal regulation during neural development.  相似文献   

10.
Saito T 《Nature protocols》2006,1(3):1552-1558
This protocol describes a basic method for in vivo electroporation in the nervous system of embryonic mice. Delivery of electric pulses following microinjection of DNA into the brain ventricle or the spinal cord central canal enables efficient transfection of genes into the nervous system. Transfection is facilitated by forceps-type electrodes, which hold the uterus and/or the yolk sac containing the embryo. More than ten embryos in a single pregnant mouse can be operated on within 30 min. More than 90% of operated embryos survive and more than 90% of these survivors express the transfected genes appropriately. Gene expression in neurons persists for a long time, even at postnatal stages, after electroporation. Thus, this method could be used to analyze roles of genes not only in embryonic development but also in higher order function of the nervous system, such as learning.  相似文献   

11.
Extant panarthropods (euarthropods, onychophorans and tardigrades) are hallmarked by stunning morphological and taxonomic diversity, but their central nervous systems (CNS) are relatively conserved. The timing of divergences of the ground pattern CNS organization of the major panarthropod clades has been poorly constrained because of a scarcity of data from their early fossil record. Although the CNS has been documented in three-dimensional detail in insects from Cenozoic ambers, it is widely assumed that these tissues are too prone to decay to withstand other styles of fossilization or geologically older preservation. However, Cambrian Burgess Shale-type compressions have emerged as sources of fossilized brains and nerve cords. CNS in these Cambrian fossils are preserved as carbon films or as iron oxides/hydroxides after pyrite in association with carbon. Experiments with carcasses compacted in fine-grained sediment depict preservation of neural tissue for a more prolonged temporal window than anticipated by decay experiments in other media. CNS and compound eye characters in exceptionally preserved Cambrian fossils predict divergences of the mandibulate and chelicerate ground patterns by Cambrian Stage 3 (ca 518 Ma), a dating that is compatible with molecular estimates for these splits.  相似文献   

12.
13.
Detection of the mouse hepatitis virus receptor within the central nervous system (CNS) has been elusive. Receptor expression on microglia was reduced during acute infection and restored following immune-mediated virus control. Receptor down regulation was independent of neutrophils, NK cells, gamma interferon, or perforin. Infection of mice devoid of distinct inflammatory cells revealed CD4(+) T cells as the major cell type influencing receptor expression by microglia. In addition to demonstrating receptor expression on CNS resident cells, these data suggest that transient receptor down regulation on microglia aids in establishing persistence in the CNS by assisting virus infection of other glial cell types.  相似文献   

14.
We previously reported that sorting nexin 3 (SNX3), a protein belonging to the sorting nexin family, regulates neurite outgrowth in mouse N1E-115 neuroblastoma cells. The snx3 gene is disrupted in patients with microcephaly, microphthalmia, ectrodactyly, and prognathism (MMEP) and mental retardation, demonstrating that SNX3 plays an important role in the genesis of these organs during development. The present study was designed to determine the expression pattern of snx3 mRNA, particularly in the mouse central nervous system (CNS), from the embryonic stage to adulthood. Whole mount in situ hybridization of embryonic day (E) 9.5 and 10.5 mouse embryos revealed strong positive signals for snx3 mRNA in the forebrain, pharyngeal arches, eyes, and limb buds. In situ hybridization analyses of embryonic and neonatal brain sections revealed that snx3 mRNA is mainly expressed in the cerebral cortex, hippocampus, piriform cortex, cerebellum, and spinal cord. In adulthood, the expression of snx3 mRNA is observed in the cerebral cortex, hippocampus, piriform cortex, and cerebellar neurons. Thus, snx3 mRNA is expressed during neural development and in adult neural tissues, suggesting that SNX3 may play an important role in the development and function of the CNS.  相似文献   

15.

Background  

Dab2, one of two mammalian orthologs of Drosophila Disabled, has been shown to be involved in cell positioning and formation of visceral endoderm during mouse embryogenesis, but its role in neuronal development is not yet fully understood. In this report, we have examined the localization of the Dab2 protein in the mouse embryonic central nervous system (CNS) at different developmental stages.  相似文献   

16.
S Ono  L N Geller  E V Lai 《Cell》1974,3(3):235-242
The sexual behavior of mice of various genotypes has been studied in our stock in which X-linked genes, Tfm and (Ohv), as well as an autosomal dominant gene, Sxr, are maintained. Since the absence of neonatal imprinting in Tfm (Ohv)/Y leads to no sexual behavior, we conclude that neonatal imprinting is the prerequisite for feminization as well as masculinization of the central nervous system. Since individual components of sexual behavior may become feminine or absent instead of being masculine in sex-reversed Tfm (Ohv)/+(O+, Sxr/+ with mosaic brains, we conclude that neonatal imprinting directly involves individual neurons, and that different degrees of imprinting by the same agent lead to masculinization or feminization. In accordance with recent views, we believe estradiol to be this imprinting agent.We envisage the role of the Tfm locus in the central nervous system as follows: within individual neurons for sexual behavior, the synthesis of aromatizing enzymes is normally inducible by androgens; these enzymes are therefore noninducible in Tfm (Ohv)/Y. In normal neonates, exposure to testosterone leads to the induced intracellular conversion of testosterone to estradiol, self imprinting by estradiol causing masculinization. Feminization may normally be due to the direct exposure of these neurons to a low circulating concentration of estradiol. An alternative explanation might be that the estradiol-receptor protein in these neurons also is normally inducible by testosterone. In this case, neonatally testosterone-exposed neurons would become inherently more responsive to estradiol than neonatally estradiol-exposed neurons.  相似文献   

17.
A strain of Cryptococcus neoformans that was isolated from the cerebrospinal fluid of a human diagnosed as having acquired immunodeficiency syndrome (AIDS), and that produced cutaneous lesions in experimentally infected, normal mice is described. Although no unusual cutaneous manifestations were noted in the patient's records, this isolate of C. neoformans proved to be dermotropic when injected intravenously into CD-1 mice. The LD50 at 28 days post infection ranged from 3.6–7.5×105 cells per mouse, and in vitro growth rate studies demonstrated that this isolate grew well at 35 °C and at 37 °C, but did not grow at 40 °C and higher. This isolate was rhinotropic producing large granulomatous lesions in the nasal tissues. Other cutaneous tissues affected were the periocular tissues, ears, feet and tail, although the granulomas were nodular in structure and less necrotic than the nasal lesions. The brain, lungs, liver, kidneys and spleen also were culture positive for C. neoformans. Histopathologically, each affected tissue examined had large densities of yeast cells and a chronic, granulomatous host response. Animals surviving the infection appeared to develop a commensal-type relationship with the infective yeast. This is the first report of an isolate of C. neoformans from an AIDS patient that has caused cutaneous manifestations in an animal model. The model described in this report may be useful for elucidating pathogenic mechanisms of cryptococcosis, particularly cutaneous manifestations of the disease.  相似文献   

18.
Canavan disease is a leukodystrophy caused by mutations in the ASPA gene. This gene encodes the enzyme that converts N-acetylaspartate into acetate and aspartic acid. In Canavan disease, spongiform encephalopathy of the brain causes progressive mental retardation, motor deficit and death. We have isolated a mouse with a novel ethylnitrosourea-induced mutation in Aspa. This mutant, named deaf14, carries a c.516T>A mutation that is predicted to cause a p.Y172X protein truncation. No full-length ASPA protein is produced in deaf14 brain and there is extensive spongy degeneration. Interestingly, we found that deaf14 mice have an attenuated startle in response to loud noise. The first auditory brainstem response peak has normal latency and amplitude but peaks II, III, IV and V have increased latency and decreased amplitude in deaf14 mice. Our work reveals a hitherto unappreciated pathology in a mouse model of Canavan disease, implying that auditory brainstem response testing could be used in diagnosis and to monitor the progression of this disease.KEY WORDS: Canavan disease, Aspa, Aspartoacylase, Leukodystrophy, ENU mutagenesis, Myelin  相似文献   

19.
We have performed a systematic clonal analysis to describe the modes of growth, dispersion and production of cells during the development of the mouse neural system. We have used mice expressing a LaacZ reporter gene under the control of the neuron specific enolase promoter to randomly generate LacZ clones in the central nervous system (CNS). We present evidence for (1) a pool of CNS founder cells that is not regionalized, i.e. give descendants dispersed along the entire A-P axis, (2) an early separation between pools of precursors for the anterior and posterior CNS and (3) distinct modes of production of progenitors in these two domains. More specifically, cell growth and dispersion of the progenitors follow a relatively coherent pattern throughout the anterior CNS, a mode that leads to a progressive regionalization of cell fates. In contrast, cell growth of progenitors of the SC appears to involve self-renewing stem cells that progress caudally during regression of the mode. Therefore, at least part of the area surrounding the node is composed of precursors with self-renewing properties and the development of the trunk is dependent on pools of stem cells regressing from A to P. Taken together with our analysis of the cell growth changes associated with neuromere formation (Mathis, L., Sieur, J., Voiculescu, O., Charnay, P. and Nicolas, J. F. (1999) Development 126, 4095-4106), our results suggest that major transitions in CNS development correspond to changes in cell behavior and may provide a link between morphogenesis and genetic patterning mechanisms (i.e. formation of the body plan).  相似文献   

20.
Theiler's murine encephalomyelitis virus infection of mice is an animal model for human demyelinating diseases. To further define the role of this virus in the disease process, we selected a virus variant resistant to neutralization by a monoclonal antibody to VP-1. This virus variant was then injected into SJL/J mice. Central nervous system tissue was compared between variant virus- and wild-type virus-infected mice. Within the brain, no large differences were observed between the two groups as to the distribution of inflammatory infiltrates around the injection site and the number of viral antigen-positive cells during the first weeks of the observation period. In contrast, in the spinal cord major differences were found between variant virus- and wild-type virus-infected mice regarding the number of inflammatory lesions, infected cells, and the size of the areas involved with time. By immunohistochemistry, equivalent numbers of infected cells could be found in the spinal cord 1 week postinfection (p.i.): however, after that time, the number of infected cells in the wild-type virus-infected mice continued to increase, whereas the virus-positive cells from the variant virus-infected mice gradually decreased. Thus, the number of viral antigen-containing cells peaked by 1 week p.i. in the variant virus-infected animals. Conversely, the number of infected cells in the spinal cords from mice inoculated with wild-type virus steadily increased until 8 weeks p.i. At this time (8 weeks p.i.), no more variant virus antigen-positive cells could be observed within the spinal cord. Plaque assay of central nervous system tissue confirmed these differences between the two groups observed by immunohistochemistry. No infectious variant virus could be isolated after 2 weeks p.i. from the brain and 4 weeks p.i. from the spinal cord, whereas infectious wild-type virus could be detected up to the end of the observation period (12 weeks p.i.). Virus which was isolated from variant virus-infected mice still retained the neutralization-resistant phenotype. These studies emphasize the important biological in vivo activity of Theiler's virus VP-1 in determining neurovirulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号